Best Approximation in Finite Dimensional Subspaces of $\mathscr{L}(W, V)$

GRZEGORZ LEWICKI

Department of Mathematics, Jagiellonian University, 30-059 Krakow, Reymonta 4, Poland

Communicated by E. W. Cheney

Received July 13, 1992; accepted in revised form March 14, 1994

We prove Kolmogorov's type characterization of best approximation for given $L \in \mathscr{L}(W, V)$ in finite dimensional subspace $\mathscr{V} \subset \mathscr{L}(W, V)$. This extends the results obtained by Malbrock for the case $W = V = c_0$ and W = C(T), V = C(S). © 1995 Academic Press, Inc.

1. INTRODUCTION

Let X be a normed space over a field K ($K = \mathbb{R}$ or $K = \mathbb{C}$) and let S_{X^*} denote the unit sphere in X^* . For $x \in X$ put

$$E(x) = \{ f \in \text{ext } S_{X^*} \colon f(x) = \|x\| \}$$
(1.1)

(ext W denotes the set of all extremal points of a given set W), and let for $Y \subset X$

$$\mathscr{P}_{Y}(x) = \{ y \in Y : ||x - y|| = \operatorname{dist}(x, Y) \}.$$
(1.2)

If Y is a linear subspace of X then the following Kolmogorov type characterization holds true.

THEOREM 1.1 (see [2]). Assume X is a normed space, $Y \subset X$ is its linear subspace, and let $x \in X \setminus Y$. Then $y_0 \in P_Y(x)$ if and only if for every $y \in Y$ there exists $f \in E(x - y_0)$ with ref $(y) \leq 0$.

A similar result can be proved in the case of strong unicity. In order to present it, let us recall that an element $y \in Y$ is called a strongly unique best approximation (briefly, SUBA) for $x \in X$ if and only if there exists r > 0 such that for every $y \in Y$,

$$\|x - y\| \ge \|x - y_0\| + r \cdot \|y - y_0\|.$$
(1.3)

151

0021-9045/95 \$6.00

Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. In [11, Theorem 2.1, p. 855] the following was shown.

THEOREM 1.2. Let $x \in X \setminus Y$ and let Y be a linear subspace of X. Then $y_0 \in Y$ is a SUBA for x with a constant r > 0 if and only if for every $y \in Y$ there exists $f \in E(x - y_0)$ with $ref(y) \leq -r ||y||$.

If Y is a finite dimensional subspace of X, then by [10, Theorem 1.1, p. 170] and Theorem 1.2 we get

THEOREM 1.3. Assume X is a normed space and $Y \subset X$ is a finite-dimensional linear subspace, and let $x \in X \setminus Y$. Then $y \in P_Y(x)$ (resp., y is a SUBA for x in Y) if and only if $0 \in \operatorname{conv} E(x - y)|_Y$ (resp., $0 \in \operatorname{intconv} E(x - y)|_Y$, where $E(x - y)|_Y = \{f|_Y : f \in E(x - y)\}$). (The symbols conv A and int A denote respectively the smallest convex set containing A and the interior of A with respect to the norm topology.)

In this note we consider the case when $X = \mathscr{L}(W, V)$ (the space of all linear continuous operators from a normed space W into a normed space V equipped with the operator norm) and $\mathscr{V} \subset X$ is a finitedimensional subspace. We prove Kolmogorov's type characterization of best approximants (Theorem 2.1) which involves only elements from the sets S_W and ext S_{V^*} . (Note that a similar characterization for the case of compact operators was shown in [5].) We also present a result concerning strong unicity. This extends the results obtained in [7] and [8] for the spaces $W = V = c_0$ and W = C(S), V = C(T). Next we characterize finitedimensional Chebyshev subspaces in the space $\mathscr{K}(c_0)$ of all compact operators going from c_0 into c_0 .

2. GENERAL CASE

Now we formulate the main result of this section.

THEOREM 2.1. Let W, V be arbitrary normed linear spaces (we consider the real and complex case) and let $\mathcal{V} \subset \mathcal{L}(W, V)$ be an n-dimensional subspace. Assume $L \in \mathcal{L}(W, V) \setminus \mathcal{V}$ and $V_0 \in \mathcal{V}$. Then $V_0 \in P_{\gamma}(L)$ if and only if for every $\varepsilon > 0$ there exists $m \in N$, $\varphi_1, ..., \varphi_m \in \text{ext } S_{V^*}$, and $w_1, ..., w_m \in S_W$ such that

$$0 \in \operatorname{conv} \{ \varphi_1 \otimes w_1 | v, ..., \varphi_m \otimes w_m | v \}$$

$$(2.1)$$

and

$$\left|\sum_{i=1}^{m} \lambda_{i}(\varphi_{i} \otimes w_{i})(L-V_{0}) - \|L-V_{0}\|\right| \leq \varepsilon,$$
(2.2)

where $\lambda_i > 0$, $\sum_{i=1}^{m} \lambda_i = 1$. (We set $(\varphi_i \otimes w_i)(L) = \varphi_i(Lw_i)$.)

Proof. Fix $\varepsilon > 0$ and let $\mathscr{L} = [L] \oplus \mathscr{V}$. Since \mathscr{L} is finite dimensional, $S_{\mathscr{L}}$ is a compact set. Hence there exist $C_1, ..., C_m \in S_{\mathscr{L}}$ such that $S_{\mathscr{L}} \subset \bigcup_{i=1}^m B_d(C_i, \varepsilon/3)$. (The symbol $B_d(x, r)$ denotes the closed ball with a centre x and a radius r.) Select for each $i \in \{1, ..., m\}$, $\varphi_i \in \text{ext } S_{V^*}$ and $w_i \in S_W$ with

$$| \|C_i\| - \varphi_i(C_i w_i)| \le \varepsilon/3.$$
(2.3)

Denote $Z_1 = \{\varphi_i \otimes w_i : i = 1, ..., m\}$ and $T = \{\varphi \otimes w : \varphi \in \text{ext } S_{V^*}, w \in S_W\}$. Note that $T|_{\mathscr{L}}$ is a total set over \mathscr{L} . Hence we can choose $Z_2 \subset T|_{\mathscr{L}}$, $Z_2 = \{(\gamma_1 \otimes u_1)|_{\mathscr{L}}, ..., (\gamma_{n+1} \otimes u_{n+1})|_{\mathscr{L}}\}$ which forms a basis of \mathscr{L}^* . Put

$$Z = Z_1 \cup Z_2, \tag{2.4}$$

and let $\mathcal{M} = \Gamma Z$ = absolutely convex hull of Z. Since \mathcal{M} is an absolutely convex absorbing set, we can define $\| \|_{\mathcal{M}}$ —the Minkowski functional of the set \mathcal{M} which is a norm in \mathcal{L}^* . Hence we can equip the space $(\mathcal{L}^*)^* = \mathcal{L}$ with a norm $\|A\|_{\varepsilon} = \max_{\gamma \in Z} |\gamma(A)|$. It is easy to observe that $\|\gamma\|_{\mathcal{M}} = \sup_{\|A\|_{\varepsilon} \leq 1} |\gamma(A)|$ and, consequently, $\| \|_{\mathcal{M}}$ is the dual norm for $\| \|_{\varepsilon}$ in \mathcal{L}^* . Now we will show that for every $A \in \mathcal{L}$, $\|\|A\| - \|A\|_{\varepsilon} | \leq \varepsilon \|A\|$. Of course, we can assume $A \neq 0$. Then

$$\begin{split} \|1 - \|(A/\|A\|)\|_{\varepsilon} \| &= \|\|C_i\| - \|(A/\|A\|)\|_{\varepsilon} \|\\ &\leq \|\|C_i\| - \|C_i\|_{\varepsilon} \| + \|\|C_i\|_{\varepsilon} - \|(A/\|A\|)\|_{\varepsilon} \|, \end{split}$$

where $C_i \in S_{\mathscr{L}}$ is chosen so that $||(A/||A||) - C_i|| \leq \varepsilon/3$. Hence

$$|1 - ||(A/||A||)||_{\varepsilon} | \leq ||C_i - (A/||A||)||_{\varepsilon} + ||C_i|| - ||C_i||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||_{\varepsilon} ||C_i - (A/||A||)|| + \varepsilon/3 \leq (2/3) \varepsilon,$$

since by (2.3)

 $\|C_i\|_{\varepsilon} \leq \|C_i\| \leq \varphi_i(C_iw_i) + \varepsilon/3 \leq \|C_i\|_{\varepsilon} + \varepsilon/3$

(by (2.4), $\varphi_i \otimes w_i \in Z_1 \subset Z$). Consequently,

$$\| \| (A/\|A\|) \| - \| (A/\|A\|) \|_{\varepsilon} \| \le 2\varepsilon/3$$

and

$$|\|A\| - \|A\|_{\varepsilon}| < \varepsilon \|A\|.$$

Hence we get immediately

$$(1-\varepsilon) \|A\| \leq \|A\|_{\varepsilon} \leq (1+\varepsilon) \|A\|.$$

From this, it is easy to deduce that

$$|\operatorname{dist}(L, \nu) - \operatorname{dist}_{\varepsilon}(L, \mathscr{V})| \leq \varepsilon ||L||.$$

(dist_e denotes the distance of L from \mathscr{V} with respect to the $|| ||_{e^{-}}$) Now let $V_0 \in \mathscr{P}_{r}(L)$ (see 1.1) and let $V_e \in \mathscr{P}_{r}^{e}(L)$ (the set of best approximants with respect to the $|| ||_{e^{-}}$). By Theorem 1.3, $0 \in \operatorname{conv} E_e(L - V_e)|_{r}$ (see 1.1). It is evident by the definition of $|| ||_e$ that $E_e(L - V_e) \subset \bigcup_{\alpha \in K, |\alpha| = 1} \alpha Z$. Hence $E_e(L - V_e) = \{\varphi_1 \otimes w_1|_{\mathscr{L}}, ..., \varphi_l \otimes w_l|_{\mathscr{L}}\}$, where $\varphi_i \in \operatorname{ext} S_r$ and $w_i \in S_w$ for i = 1, ..., l. Note that

$$\varepsilon \|L\| \ge |\operatorname{dist}(L, \mathscr{V}) - \operatorname{dist}_{\varepsilon}(L, \mathscr{V})|$$

$$= |\|L - V_0\| - \|L - V_{\varepsilon}\|_{\varepsilon} |$$

$$= \left|\|L - V_0\| - \sum_{i=1}^{l} \lambda_i (\varphi_i \otimes w_i)(L - V_{\varepsilon})\right|$$

$$= \left|\|L - V_0\| - \sum_{i=1}^{l} \lambda_i (\varphi_i \otimes w_i)(L - V_0)\right|$$

where $\lambda_i > 0$, $\sum_{i=1}^{l} \lambda_i = 1$, and $\sum_{i=1}^{l} \lambda_i (\varphi_i \otimes w_i) |_{\gamma} = 0$. This proves the first part of the theorem (if $||L|| \neq 1$ we can start from $\varepsilon/||L||$).

Now suppose, on the contrary, that $V_0 \notin \mathscr{P}_r(L)$ and condition (2.2) holds. Put $\varepsilon = (\|L - V_0\| - \operatorname{dist}(L, \mathscr{V}))/2$ and let $V_1 \in \mathscr{P}_r(L)$. Then

$$\varepsilon + \|L - V_1\| < \|L - V_0\| \le \left| \sum_{i=1}^l \lambda_i (\varphi_i \otimes w_i) (L - V_0) \right| + \varepsilon,$$

which by (2.1) gives

$$||L-V_1|| < \left|\sum_{i=1}^l \lambda_i(\varphi_i \otimes w_i)(L-V_1)\right|,$$

a contradiction.

Remark 2.2. In Theorem 2.1 the set ext S_{V^*} can be replaced by any norming set $C \subset S_{V^*}$ and S_W by any norming set $D \subset S_{W^{***}}$. (A set $F \subset S_{V^*}$ is called a norming set iff $||v|| = \sup_{f \in F} |f(v)|$ for every $v \in V$.)

Applying Theorem 2.1 we may prove a necessary condition for \mathscr{V} to be a non-Chebyshev subspace. The method of the proof is similar to that of [8].

THEOREM 2.3. Assume $\mathscr{V} \subset \mathscr{L}(W, V)$ is a non-Chebyshev finite-dimensional subspace (we consider the real case). Then there exists $D \in \mathscr{V}$, ||D|| = 1

such that for every $\varepsilon > 0$ there exists $f_1, ..., f_m \in \text{ext } S_{V^*}$ and $w_1, ..., w_m \in W$, $\sum_{i=1}^{m} ||w_i|| = 1$ such that

- (a) $G = \sum_{i=1}^{m} (f_i \otimes w_i)|_{Y} = 0;$
- (b) if $F \in \mathcal{L}^*(W, V)$ and $||G \pm F|| \leq 1$ then $|F(D)| < \varepsilon$.
- (c) $\sum_{i=1}^{m} |(f_i \otimes w_i)(D)| < \varepsilon.$

Proof. Since \mathscr{V} is a non-Chebyshev subspace, there exists $L \in \mathscr{L}(W, V)$ such that $0, \pm D \in \mathscr{P}_{\mathscr{V}}(L), \|D\| = 1$. This will be the required D. Now fix $\varepsilon > 0$. Applying Theorem 2.1, we can find $f_1, ..., f_m \in \operatorname{ext} S_{V^*}, u_1, ..., u_m \in S_W, \lambda_1, ..., \lambda_m \ge 0$, and $\sum_{i=1}^m \lambda_i = 1$ such that:

$$\sum_{i=1}^{m} \lambda_i (f_i \otimes u_i) |_{\gamma} = 0$$
(2.5)

and

$$\left|\sum_{i=1}^{m} \lambda_i (f_i \otimes u_i)(L) - \|L\|\right| < \varepsilon/2.$$
(2.6)

Put for i = 1, ..., m, $w_i = \lambda_i u_i$. Now we check that $f_1, ..., f_m$ and $w_1, ..., w_m$ satisfy (a), (b), (c). Note that condition (a) is guaranteed by (2.5). To prove (b), fix $F \in \mathscr{L}^*(W, V)$, $||F \pm G|| \le 1$. Hence $(F \pm G)(L) \le ||L||$. Since $G|_{\mathscr{T}} = 0$, $G(L) \pm F(L-D) \le ||L-D|| = ||L||$. By (2.6), $|F(L)| < \varepsilon/2$ and $|F(L-D)| < \varepsilon/2$. Hence $|F(D)| < \varepsilon$.

To show (c), put

$$P = \{i: (f_i \otimes w_i)(D) \ge 0\},$$

$$P_1 = \{i: (f_i \otimes w_i)(D) > 0\},$$

$$U = \{i: (f_i \otimes w_i)(D) < 0\}.$$
(2.7)

If $U(P_1 \text{ resp.})$ is empty, then by (2.5) $P_1(U \text{ resp.})$ is empty and (c) holds true. So assume that U and P_1 are nonempty. Hence, by (2.5),

$$\sum_{i \in P} |(f_i \otimes w_i)(D)| = \sum_{i \in U} |(f_i \otimes w_i)(D)|.$$

Now suppose that (c) does not hold. Then

$$\sum_{i \in P} |(f_i \otimes w_i)(D)| \ge \varepsilon/2$$

and

$$\sum_{i \in U} |(f_i \otimes w_i)(D)| \ge \varepsilon/2.$$
(2.8)

Put $\gamma_P = \sum_{i \in P} ||w_i||$ and $\gamma_U = \sum_{i \in U} ||w_i||$. By (2.7), $\gamma_P > 0$, $\gamma_U > 0$, and $\gamma_U + \gamma_P = 1$. Set

$$S_1 = \sum_{i \in P} (f_i \otimes w_i)(L), \qquad S_2 = \sum_{i \in U} (f_i \otimes w_i)(L)$$

By (2.6) $S_1 + S_2 > ||L|| - \varepsilon/2$. Thus either $S_1 > \gamma_P(||L|| - \varepsilon/2)$ or $S_2 > \gamma_U(||L|| - \varepsilon/2)$. Suppose that $S_1 > \gamma_P(||L|| - \varepsilon/2)$. Then by (2.7) and (2.8)

$$\sum_{i \in P} (f_i \otimes w_i)(L+D) > \gamma_P \|L\| = \gamma_P \|L+D\|,$$

since $0 < \gamma_P < 1$. But for each $i \in P$,

$$(f_i \otimes w_i)(L+D) \le ||w_i|| ||L+D||.$$
 (2.9)

By summing both sides of (2.9) we get a contradiction.

If $S_2 > \gamma_U(||L|| - \varepsilon/2)$ then a similar argument using U and L - D provides a contradiction. The proof of Theorem 2.3 is complete.

Now we consider the case of strong unicity.

THEOREM 2.4. Let X be a normed real space and let $V \subset X$ be an *n*-dimensional subspace with a basis $v_1, ..., v_n$. Let $S \subset S_{X^*}$ be a norming set. Assume furthermore that there is $\delta > 0$ such that for every set $f_1, ..., f_n$ of linearly independent functionals from S

$$|\det[f_i(v_i)]_{i,\ i=1,\dots,n}| > \delta > 0.$$
(2.10)

(det A denotes the determinant of a matrix A.) Then each $x \in X$ has a strongly unique best approximation in V.

Proof. Fix $x \in X \setminus V$ and consider $Z = [x] \oplus V$. Since Z as a finitely dimensional subspace is separable, we can assume that S is countable. By the totality of S over Z, we can choose $k_0 \in N$ such that $\{\phi_1, ..., \phi_{k_0}\}$ is total over Z. Hence for each $k \ge k_0$ we can equip Z with a norm

$$||z||_{k} = \max_{i=1,\dots,k} |s_{i}(z)|$$
 $(S = \{s_{1}, s_{2}, \dots\}).$

By (2.10) V with $\| \|_k$ is an interpolating subspace of Z. Hence for $k \ge k_0$ there exists $v_k \in V$ which is a SUBA (see 1.3) for x with respect to the $\| \|_k$. By Theorem 1.3, $0 \in \text{int conv } E_k(x - v_k) |_V$ (see 1.1). (We consider the set $E_k(x - v_k)$ with respect to the $\| \|_k$.) By Carathéodory's theorem $0 = \sum_{i=1}^{n+1} \lambda_i^k f_i^k |_V$, where $f_1^k, ..., f_{n+1}^k \in E_k(x - v_k)$, $\lambda_i^k > 0$, and $\sum_{i=1}^{n+1} \lambda_i^k = 1$. Passing to a subsequence if necessary, we can assume $v_k \to v_0$, $\lambda_i^k \to \lambda_i$, and $f_i^k \to f_i \in S_{Z^*}$. It is evident that $f_i(x-v_0) = ||x-v_0||$ and $\sum_{i=1}^{n+1} \lambda_i f_i|_V = 0$. Now we show that $\lambda_i > 0$ for i = 1, ..., n+1. Note that $\lambda_{i_0} > 0$ for some $i_0 \in \{1, ..., n+1\}$, since $\sum_{i=1}^{n+1} \lambda_i = 1$, $\lambda_i \ge 0$ for i = 1, ..., n+1. We can assume $i_0 = n+1$. By the Cramer rule,

$$\lambda_i^k = \lambda_{n+1}^k \cdot \Delta_i^k / \Delta_{n+1}^k \quad \text{for} \quad i = 1, ..., n,$$
(2.11)

where

$$\Delta_{i}^{k} = (-1)^{i+1} \det[f_{l}^{k}(v_{j})]_{j=1,\dots,n,\ l=1,\dots,n+1,\ l\neq i}$$

Hence, by (2.11), $1/|\lambda_i^k| \leq M/\delta \cdot 2/|\lambda_{n+1}|$ for k sufficiently large and M > 0independent of k. Consequently, $\lambda_i = \lim_{k \to \infty} \lambda_i^k > 0$. Now take $w \in V \setminus \{0\}$. Since the set $\{f_1|_V, ..., f_{n+1}|_V\}$ is total over V, $f_{i_0}(w) < 0$ for some $i_0 \in \{1, ..., n+1\}$. From this we derive that f(w) < 0 for some $f \in \text{ext} \{g \in S_{Z^*}: g(x-v_0) = ||x-v_0||\}$. An easy calculation shows that $f \in E(x-v_0)$ (see 1.1). Note that a function $G: S_V \ni w \to \inf\{g(w): g \in E(x-v_0)\}$ is upper semicontinuous and, by the above reasoning, G(w) < 0 for every $w \in S_V$. By the compactness of S_V we get $\sup\{G(w): w \in S_V\} = -r < 0$. Now fix $v \in V \setminus \{0\}$ and take $f \in E(x-v_0)$ with f(v/||v||) < G(v/||v||) + r/2. Hence f(v/||v||) < -r/2 and consequently $f(v) < -r/2 \cdot ||v||$.

By Theorem 1.2, v_0 is a SUBA for x in V, which completes the proof of the theorem.

Remark 2.5. By ([7, Theorem 3.3]) the term δ in (2.10) is essential. Here

$$S = \{e_i \otimes x \colon x \in \text{ext } S_{I^\infty}, e_i \in \text{ext } S_{I_1}\}.$$

EXAMPLE 2.6. Assume $W = V = c_0$. Let $A \in \mathscr{L}(W, V)$ be so chosen that for every $i \in N$, $x \in \text{ext } S_{U^{\infty}}$,

$$|(Ax)_i| > \delta > 0.$$

Then, by Theorem 2.4, each $L \in \mathscr{L}(W, V)$ has a strongly unique best approximation in [A]. (The set S is the same as in Remark 2.5.)

EXAMPLE 2.7. Assume $W = l_1$, $V = c_0$. Let $A \in \mathcal{L}(W, V)$ be represented as an infinite matrix $[A(i, j)]_{i, j=1, 2, ...}$. If there exists $\delta > 0$ such that for every $i, j \in N |A(i, j)| > \delta > 0$, then each $L \in \mathcal{L}(W, V)$ possesses a strongly unique best approximation in [A]. Here

$$S = \{e_i \otimes e_j : i, j = 1, 2, ..., e_i, e_j \in \text{ext } S_{l_i}\}.$$

3. Strong Unicity in $\mathscr{K}(c_0)$

We start with the following.

THEOREM 3.1. Let $\mathscr{V} \subset \mathscr{H}(c_0)$ be a finite dimensional Chebyshev subspace. (The symbol $\mathscr{H}(c_0)$ denotes the space of all compact operators from c_0 into c_0 ; we consider the real case). Then each $L \in \mathscr{H}(c_0)$ has a strongly unique best approximation in \mathscr{V} .

Proof. Assume that there exists $L_0 \in \mathscr{K}(c_0) \setminus \mathscr{V}$ such that $V_0 \in \mathscr{P}_{\mathscr{I}}(L_0)$ (see (1.2)) is not a SUBA for L_0 in \mathscr{V} . Put

$$I = \{i \in N : \|e_i \circ (L_0 - V_0)\| = \|L_0 - V_0\|\}.$$
(3.1)

(We denote $e_i(x) = x_i$ for $x \in c_0$.) By [9],

$$\operatorname{ext} S_{\mathscr{K}^*(c_0)} = \operatorname{ext} S_{l^1} \otimes \operatorname{ext} S_{l^\infty}. \tag{3.2}$$

Hence

$$||L_0 - V_0|| = (e_i \otimes x^i)(L_0 - V_0)$$

for all $e_i \otimes x^i \in E(L_0 - V_0)$ (see 1.1). Consequently, the set I is nonempty. For each $i \in I$ define

$$Z_i = \{ x \in \text{ext } S_{I^{\infty}} : (e_i \otimes x)(L_0 - V_0) = \|L_0 - V_0\| \}.$$
(3.3)

Since $V_0 \in \mathscr{P}_{\gamma}(L_0)$, by Theorem 1.1, for every $V \in \mathscr{V}$ there exists $i \in I$ and $x^i \in Z_i$ such that

$$(e_i \otimes x^i)(V) \le 0. \tag{3.4}$$

Since V_0 is not a SUBA for L_0 and \mathscr{V} is finite dimensional, by Theorem 1.2, there exists $V_1 \in S_{\mathcal{V}}$ such that for every $i \in I$ and $x \in Z_i$

$$(e_i \otimes x)(V_1) \ge 0. \tag{3.5}$$

Now assume that we have constructed $L \in \mathscr{K}(c_0)$ such that

$$\|L - \alpha V_1\| \le \|L\| \tag{3.6}$$

for $\alpha \in [0, \alpha_0)$ and

$$(e_i \otimes x)(L) = \|L\| \tag{3.7}$$

for every $i \in I$ and $x \in Z_i$. By Theorem 1.1, (3.4), and (3.6), $\alpha V_1 \in \mathscr{P}_r(L)$ for every $\alpha \in [0, \alpha_0)$, which contradicts the fact that \mathscr{V} is a Chebyshev subspace. So to finish the proof, it is necessary to construct an $L \in \mathscr{K}(c_0)$ satisfying (3.6) and (3.7). To do this, fix $i \in I$ and $x = (x_1, x_2, ...) \in Z_i$. If $\sum_{k=1}^{\infty} |V_1(i,k)| = 0 \ (V_1 \text{ is represented by a matrix } [V_1(i,k)]_{i,k=1,2,\dots}) \text{ then}$ define

$$L_i = (L(i, k))_{k=1, 2, \dots},$$
(3.8)

where

$$L(i, k) = L_0(i, k) - V_0(i, k).$$

(Here $[L_0(i, k)]_{i, k=1, 2, ...}$ denote the matrix corresponding to L_0 and $[V_0(i, k)]_{i, k=1, 2, ...}$ the matrix corresponding to V_0).

If $\sum_{k=1}^{\infty} |V_1(i, k)| > 0$, then put

$$U_i = \{k \in N \colon L_0(i, k) - V_0(i, k) = 0\}.$$
(3.9)

Since $||e_i \circ (L_0 - V_0)|| = \text{dist}(L_0, \mathscr{V}) > 0, \ U_i \neq N$. Put

$$F_i = \{k \in N \setminus U_i: x_k = \operatorname{sgn} V_1(i, k)\},$$
(3.10)

$$E_i = N \setminus (U_i \cup F_i). \tag{3.11}$$

Take $y = (y_1, y_2, ...,) \in \text{ext } S_{l^{\infty}}$ given by

$$y_k = \begin{cases} x_k & \text{for } k \in F_i \cup E_i \\ -\operatorname{sgn} V_1(i,k) & \text{for } k \in U_i. \end{cases}$$
(3.12)

By (3.9) and (3.12), $(e_i \otimes y)(L_0 - V_0) = ||L_0 - V_0||$. According to (3.5),

$$(e_i \otimes y)(V_1) = \sum_{k \in F_i} |V_1(i, k)| - \sum_{k \in (U_i \cup E_i)} |V_1(i, k)| \ge 0.$$
(3.13)

From this we derive $F_i \neq \emptyset$, since $\sum_{k=1}^{\infty} |V_1(i, k)| > 0$. Define for $k \in N$,

$$L(i,k) = \begin{cases} V_1(i,k) & \text{for } k \in F_i \\ 0 & \text{for } k \in N \setminus F_i \end{cases}$$
(3.14)

and set $L_i = (L(i, 1), L(i, 2), ...)$. We show that for $\alpha \in [0, 1), \beta \ge 1$,

$$\sum_{k=1}^{\infty} |\beta L(i,k) - \alpha V_1(i,k)| \le \beta \cdot \sum_{k=1}^{\infty} |L(i,k)|.$$
(3.15)

To do this, take any $z \in \text{ext } S_{1\infty}$. If $z_k = x_k$ for every $k \in F_i$ then

$$(e_i \otimes z)(V_1) = \sum_{k=1}^{\infty} V_1(i,k) \, z_k = \sum_{k \in F_i} |V_1(i,k)| + \sum_{k \in E_i \cup U_i} V_1(i,k) \, z_k \ge 0$$

by (3.13). Hence

$$\sum_{k=1}^{\infty} \left(\beta L(i,k) - \alpha V_1(i,k)\right) z_k = \sum_{k=1}^{\infty} \beta L(i,k) z_k - \alpha \cdot \sum_{k=1}^{\infty} V_1(i,k) z_k$$
$$= \beta \cdot \sum_{k \in F_i} |L(i,k)| - \alpha \cdot \sum_{k=1}^{\infty} V_1(i,k) z_k$$
$$\leqslant \beta \cdot \sum_{k=1}^{\infty} |L(i,k)|.$$

If $z_k = -x_k$ for some $k \in F_i$, then the set $F_i^1 = \{k \in F_i : x_k = -z_k\}$ is nonempty. Compute

$$\begin{split} \sum_{k=1}^{\infty} \left(\beta L(i,k) - \alpha V_{1}(i,k)\right) z_{k} \\ &= \sum_{k \in F_{i}^{1}} \left(\beta L(i,k) - \alpha V_{1}(i,k)\right) z_{k} + \sum_{k \in (F_{i} \setminus F_{i}^{1}) \cup E_{i} \cup U_{i}} \left(\beta L(i,k) - \alpha V_{1}(i,k)\right) z_{k} \\ &= \sum_{k \in F_{i}^{1}} \left(\alpha - \beta\right) |V_{1}(i,k)| + \sum_{k \in (F_{i} \setminus F_{i}^{1}) \cup E_{i} \cup U_{i}} \left(\beta L(i,k) - \alpha V_{1}(i,k)\right) z_{k} \\ &\leq \sum_{k \in F_{i}^{1}} \left(\beta - \alpha\right) |V_{1}(i,k)| + \sum_{k \in F_{i} \setminus F_{i}^{1}} \left(\beta - \alpha\right) |V_{1}(i,k)| + \sum_{k \in E_{i} \cup U_{i}} - \alpha V_{1}(i,k) z_{k} \\ &= \sum_{k \in F_{i}} \beta |V_{1}(i,k)| - \alpha \cdot \left(\sum_{k \in F_{i}} |V_{1}(i,k)| + \sum_{k \in E_{i} \cup U_{i}} V_{1}(i,k) z_{k}\right) \\ &\leq \beta \cdot \sum_{k \in F_{i}} |(V_{1}(i,k)| \\ &= \beta \cdot \sum_{k = 1}^{\infty} |L(i,k)| \end{split}$$

(see 3.13).

Now if $i \notin I$ then we define $L_i = (L(i, 1), L(i, 2)...,)$ by

$$L(i, k) = L_0(i, k) - V_0(i, k)$$
 for $k = 1, 2,$ (3.16)

Finally observe that by the Schur theorem (see [4, p. 864]) for $i \ge i_0$

$$\|e_i \circ (L_0 - V_0)\| \leq \operatorname{dist}(L_0, \mathscr{V})/2.$$

Hence the set I is finite and

$$M = \sup_{i \in N \setminus I} \|e_i \circ (L_0 - V_0)\| < \|L_0 - V_0\|.$$
(3.17)

Following (3.15) for $i \in I$ we can modify, if necessary, the rows L_i defined by (3.8) and (3.14), multiplying them by constants $\beta_i \ge 1$ such that

$$||L_i - \alpha V_1(i, \cdot)||_1 < ||L_i||_1 = a > ||L_0 - V_0||_1$$

for $\alpha \in [0, 1)$. Now choose $\alpha_0 \in (0, 1)$ such that $M + \alpha_0 < ||L_0 - V_0||$. By (3.17), for $\alpha \in [0, \alpha_0)$ and $i \in N \setminus I$,

$$||L_i - \alpha V_1(i,)||_1 < ||L_0 - V_0||.$$

Hence, by following (3.8), (3.14), and (3.15), the operator L defined by (3.8), (3.14), and (3.16) satisfies (3.6) for $\alpha \in [0, \alpha_0)$ and (3.7) for all $i \in I$ and $x \in Z_i$. The proof of Theorem 3.1 is complete.

Note that the unicity of best approximation for given $L \in \mathscr{K}(c_0)$ in \mathscr{V} does not force the strong unicity because of

EXAMPLE 3.2. Let $\vec{L} = [L(i, k)]_{i, k=1, 2, ...}$ and $V = [V(i, k)]_{i, k=1, 2, ...}$ be defined by

$$L(i, k) = \begin{cases} 0 & \text{if } i \neq 1 \\ 1/k^3 & \text{if } i = 1 \end{cases}$$
$$V(i, k) = \begin{cases} 0 & \text{if } i \neq 1 \\ (-1)^k/k^2 & \text{for } i = 1, \quad k > 1 \\ -\sum_{l=2}^{\infty} (-1)^l/l^2 & \text{for } i = 1, \quad k = 1 \end{cases}$$

Let $\mathscr{V} = [V]$. We show that 0 is the unique best approximation for L in \mathscr{V} . Take $\alpha \in \mathbb{R} \setminus \{0\}$. If $\alpha > 0$, choose an even number k_0 such that $\alpha/k_0^2 > 1/k_0^3$. Let $z = (z_1, z_2, ...) \in \text{ext } S_{I^{\infty}}$ be given by

$$z_k = \begin{cases} 1 & \text{if } k \neq k_0 \\ -1 & \text{if } k = k_0 \end{cases}$$

Then

$$\begin{split} \|L - \alpha V\| &\ge (e_1 \otimes z)(L - V) \\ &= \sum_{l=1}^{\infty} z_l (L(1, l) - \alpha V(1, l)) \\ &= \sum_{l=1}^{\infty} (L(1, l) - V(1, l)) + 2(\alpha/k_0^2 - 1/k_0^3) \\ &> \sum_{l=1}^{\infty} L(1, l) = \|L - 0\|, \end{split}$$

since $\sum_{l=1}^{\infty} V(1, l) = 0$. If $\alpha < 0$, choose k_0 odd such that $-\alpha/k_0^2 > 1/k_0^3$.

Reasoning as above we get $||L - \alpha V|| > ||L||$. Hence $0 \in \mathscr{P}_r(L)$ is the unique best approximation. However, $E(L-0) = \{e_1 \otimes (1, 1, ...)\}$ (see (3.2) and (1.1)). Since $e_1 \otimes (1, 1, ...)(V) = 0$, by Theorem 1.2 0 is not a SUBA for L in \mathscr{V} .

Remark 3.3. If we replace c_0 by l_{∞}^m , then by [3, Theorem 2.2(a)] or [9] the set ext $S_{\mathscr{K}^{\bullet}(l_{\infty}^m)}$ is finite. By [6], if \mathscr{V} is a subspace of $\mathscr{K}(l_{\infty}^m)$ then $L \in \mathscr{K}(l_{\infty}^m)$ has a unique best approximation in \mathscr{V} if and only if L has a strongly unique best approximation in \mathscr{V} .

COROLLARY 3.4. If $V \in S_{\mathscr{H}(c_0)}$ then $\mathscr{V} = [V]$ is a Chebyshev subspace if and only if for every $i \in N$ and $x \in \text{ext } S_{I^{\alpha}}$,

$$(e_i \otimes x)(V) \neq 0. \tag{3.18}$$

Comparing Corollary 3.4 with Theorem 3.3 of [7] we get

PROPOSITION 3.5. There exists

$$\varphi \in \operatorname{ext} S_{\mathscr{L}^{*}(c_{0})} \setminus \{ e_{i} \otimes x : i = 1, 2, ..., x \in \operatorname{ext} S_{I^{\times}} \}.$$

Proof. If ext $S_{\mathscr{L}^{\bullet}}(c_0) \subset \{(e_i \otimes x) : i = 1, 2, ..., x \in \text{ext } S_{I^{\times}}\}$ then by Theorems 1.1 and 1.2 each V satisfying (3.18) defines a Chebyshev subspace in $\mathscr{L}(c_0)$ which contradicts Theorem 3.3 of [7].

Proposition 3.5 shows that Theorem 2.2(a) of [3] cannot be generalized from the case compact operators to the case of linear operators.

At the end of this section we present an example of a two-dimensional Chebyshev subspace in $\mathscr{K}(c_0)$. The reasoning presented here is similar to that of [1]. First we recall, after [1],

LEMMA 3.6. Let M > 1 be given. Assume $f(r) = \sum_{n=0}^{\infty} a_n r^n$ is a power series whose coefficients are not all 0. Assume that if $a_n \neq 0$ then

$$1 \leq |a_n| \leq M.$$

Then for every $r \in (0, 1/(M+1)), f(r) \neq 0$.

Proof. Let N denote the smallest index n such that $a_n \neq 0$. Then

$$|f(r)| = \left| \sum_{n=N}^{\infty} a_n r^n \right| \ge |a_N \cdot r^N| - \sum_{n=N+1}^{\infty} |a_n| |r|^n$$
$$\ge |r|^N - M |r|^{N+1} / (1 - |r|)$$
$$= |r|^N / (1 - |r|)(1 - |r|(1 + M)) > 0.$$

EXAMPLE 3.7. Let $c \in (0, 1)$, $r \in (0, 1/4)$. Define

$$V_1(i,k) = c^i \cdot r^{2^{2k+1}}$$
 for $i, k = 1, 2, ...,$ (3.19)

$$V_2(i,k) = (c/2)^i \cdot r^{2^{2k+2}}$$
 for $i, k = 1, 2,$ (3.20)

We show that V_1 , V_2 defined by (3.19) and (3.20) form a two-dimensional interpolating (hence Chebyshev) subspace in $\mathscr{K}(c_0)$. To do this, take $\varphi_1 = e_{i_1} \otimes x_1$, $\varphi_2 = e_{i_2} \otimes x_2$ to be two linearly independent functionals from ext $S_{\mathscr{K}^{\bullet}(c_0)}$. We prove that det $[\varphi_i(V_j)]_{i,j=1,2} \neq 0$. Let $x_j = (\sigma_{1j}, \sigma_{2j}, ...)$ for j = 1, 2 ($\sigma_{ij} = \pm 1$). Note that

$$\det[\varphi_{i}(V_{j})]_{i, j=1, 2} = \det\left[\sum_{j=1}^{\infty} \sigma_{1j} V_{1}(i_{1}, j), \sum_{j=1}^{\infty} \sigma_{1j} V_{2}(i_{1}, j)\right]$$
$$= \sum_{j_{1}, j_{2}=1}^{\infty} \det\left[\frac{\sigma_{1j_{1}} V_{1}(i_{2}, j), \sum_{j=1}^{\infty} \sigma_{2j} V_{2}(i_{2}, j)\right]$$
$$= \sum_{j_{1}, j_{2}=1}^{\infty} \det\left[\frac{\sigma_{1j_{1}} V_{1}(i_{2}, j), \sigma_{1j_{2}} V_{2}(i_{2}, j_{2})\right]$$
$$= \sum_{j_{1}, j_{2}=1}^{\infty} \det\left[\frac{\sigma_{1j_{1}} c^{i_{1}} r^{2j_{1}+1}, \sigma_{1j_{2}}(c/2)^{i_{1}} r^{2j_{2}+2}}{\sigma_{2j_{1}} c^{i_{1}} r^{2j_{1}+1}, \sigma_{2j_{2}}(c/2)^{i_{2}} r^{2j_{2}+2}}\right]$$
$$= \sum_{j_{1}, j_{2}=1}^{\infty} r^{2^{2j_{1}+1} + 2^{2j_{2}+2}} \cdot \det\left[\frac{\sigma_{1j_{1}} c^{i_{1}}, \sigma_{1j_{2}}(c/2)^{i_{1}}}{\sigma_{2j_{1}} c^{i_{2}}, \sigma_{2j_{2}}(c/2)^{i_{2}}}\right].$$

If $2^{2j_1+1} + 2^{2j_2+2} = 2^{2k_1+1} + 2^{2k_2+2}$, because of the unique binary expression of each integer we get $j_1 = k_1$ and $j_2 = k_2$. In particular, then, distinct pairs (j_1, j_2) give distinct powers of r. Hence the above determinant can be regarded as a power series with coefficients.

$$\mathcal{A}_{j_1, j_2} = \det \begin{bmatrix} \sigma_{1j_1} c^{i_1}, \sigma_{1j_2} (c/2)^{i_1} \\ \sigma_{2j_1} c^{i_2}, \sigma_{2j_2} (c/2)^{i_2} \end{bmatrix}.$$

If $i_1 = i_2$ then

$$\det[\varphi_i(V_j)]_{i,j=1,2} = (c^2/2)^{i_1} \cdot \sum_{j_1,j_2=1}^{\infty} r^{2^{2j_1+1}+2^{2j_2+2}} B_{j_1,j_2},$$

where

$$B_{j_1, j_2} = \det \begin{bmatrix} \sigma_{1, j_1}, \sigma_{1, j_2} \\ \sigma_{2, j_1}, \sigma_{2, j_2} \end{bmatrix}.$$
 (3.21)

Since $e_{i_1} \otimes x_1$, $e_{i_2} \otimes x_2$ are linearly independent, not all B_{j_1, j_2} are equal to 0. Note that if $B_{j_1, j_2} \neq 0$ then $|B_{j_1, j_2}| = 2$. If $i_1 \neq i_2$ (we may assume $i_1 < i_2$) then

$$\det[\varphi_i(V_j)]_{i,j=1,2} = c^{i_1+i_2}[(1/2)^{i_1} - (1/2)^{i_2}] \cdot \sum_{j_1,j_2=1}^{\infty} r^{2^{2j_1+1}+2^{2j_2+2}} B_{j_1,j_2},$$

where

$$\boldsymbol{B}_{j_1, j_2} = (1/[(1/2)^{i_1} - (1/2)^{i_2}]) \cdot \det \begin{bmatrix} \sigma_{1j_1}, \sigma_{1j_2}(1/2)^{i_1} \\ \sigma_{2j_1}, \sigma_{2j_2}(1/2)^{i_2} \end{bmatrix}.$$
 (3.22)

It is clear that

$$1 \leq |B_{j_1, j_2}| \leq [(1/2)^{i_1} + (1/2)^{i_2}]/[(1/2)^{i_1} - (1/2)^{i_2}]$$
$$= [1 + (1/2)^{i_2 - i_1}]/[1 - (1/2)^{i_2 - i_1}]$$
$$\leq [1 + (1/2)]/[1 - (1/2)] = 3.$$

Applying Lemma 3.6 to the series

$$\sum_{j_1, j_2=1}^{\infty} B_{j_1, j_2} r^{2^{2j_1+1}+2^{2j_2+2}},$$

where B_{j_1, j_2} are defined by (3.21) or (3.22), we get det $[\varphi_i(V_j)]_{i, j=1, 2} \neq 0$ as required.

ACKNOWLEDGMENTS

The author expresses his gratitude to the referees for their helpful comments concerning the final version of this paper.

REFERENCES

- J. H. BIGGS, F. R. DEUTSCH, R. E. HUFF, P. D. MORRIS, AND J. E. OLSEN, Interpolating subspaces in I₁ spaces, J. Approx. Theory 7 (1973), 235–301.
- B. BROSOWSKI AND R. WEGMANN, Charakterisierung bester Approximationen in normirierten Vektorraumen, J. Approx. Theory 3 (1970), 369-397.

164

- 3. H. S. COLLINS AND W. RUESS, Weak compactness in spaces of compact operators and vector-valued functions, *Pacific J. Math.* 106 (1983), 45-71.
- 4. R. E. EDWARDS, "Functional Analysis, Theory, and Applications," Moscow, 1969. [in Russian]
- 5. G. LEWICKI, Kolmogorov's type criteria for spaces of compact operators, J. Approx. Theory 64 (1991), 181-202.
- P. F. MAH, Characterizations of the strongly unique best approximations, Numer. Funct. Anal. Optimi. 7 (1984/1985), 311-331.
- 7. J. MALBROCK, Chebyshev subspaces in the space of bounded linear operators from c_0 to c_0 , J. Approx. Theory 9 (1973), 149–164.
- 8. J. MALBROCK, Best approximation in the space of bounded linear operators from C(X) to C(Y), J. Approx. Theory 15 (1975), 132-142.
- 9. W. M. RUESS AND C. STEGALL, Extreme points in duals of operator spaces, *Math. Ann.* 261 (1982), 535-546.
- 10. I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- A. WÓJCIK, Characterization of strong unicity by tangent cones, in "Approximation and Function Spaces, Proceedings of the International Conference, Gdansk, 1979" (Z. Ciesielski, Ed.), pp. 854–866, PWN, Warsawa/North-Holland, Amsterdam, 1981.

640/81/2-2