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We prove Kolmogorov's type characterization of best approximation for given
Le #(W, V) in finite dimensional subspace ¥" < Z(W, V). This extends the results
obtained by Malbrock for the case W=V =¢y, and W=C(T), V=C(S). € 1995
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1. INTRODUCTION

Let X be a normed space over a field K (K=R or K=C) and let Sy.
denote the unit sphere in X *. For x€ X put

E(x)={feext Sy.: flx)=llx|} (11)

(ext W denotes the set of all extremal points of a given set W), and let for
Yo X

P(x)={ye Y: |x—y| =dist(x, Y)}. (12)

If Y is a linear subspace of X then the following Kolmogorov type charac-
terization holds true.

THEOREM 1.1 (see [2]). Assume X is a normed space, Y < X is its linear
subspace, and let x€ X\Y. Then y,€ P{(x) if and only if for every yeY
there exists [ € E(x — yo) with ref(y) <0.

A similar result can be proved in the case of strong unicity. In order to
present it, let us recall that an element y € Y is called a strongly unique best
approximation {briefly, SUBA) for x€ X if and only if there exists r >0
such that for every ye Y,

x—=pl = lx—yol +r-ly=yol. (1.3)
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In [ 11, Theorem 2.1, p. 855] the following was shown.

THEOREM 12. Let xe X\Y and let Y be a linear subspace of X. Then
Vo€ Y is a SUBA for x with a constant r >0 if and only if for every yeY
there exists [ e E(x — yo) with ref(y)< —r || y|.

If Y is a finite dimensional subspace of X, then by [10, Theorem 1.1,
p- 170] and Theorem 1.2 we get

THEOREM 1.3. Assume X is a normed space and Y < X is a finite-dimen-
sional linear subspace, and let x e X\Y. Then ye P ,(x) (resp., y is a SUBA
for x in Y) if and only if 0 e conv E(x — y}|y (resp., 0 € intconv E(x — y}|y,
where E(x—y)|y=1{f|y:f€E(x—y)}). (The symbols conv A and int 4
denote respectively the smallest convex set containing A and the interior of
A with respect to the norm topology.)

In this note we consider the case when X=¢(W, V) (the space of
all linear continuous operators from a normed space W into a normed
space V equipped with the operator norm) and ¥ <X is a finite-
dimensional subspace. We prove Kolmogorov’s type characterization of
best approximants (Theorem 2.1) which involves only elements from the
sets S, and ext S,... (Note that a similar characterization for the case of
compact operators was shown in [5].) We also present a result concerning
strong unicity. This extends the results obtained in [7] and [8] for the
spaces W= V=c¢, and W=C(S), V= C(T). Next we characterize finite-
dimensional Chebyshev subspaces in the space #(c¢,) of all compact
operators going from ¢, into ¢g.

2. GENERAL CASE
Now we formulate the main result of this section.
THEOREM 2.1. Let W, V be arbitrary normed linear spaces (we consider

the real and complex case) and let v~ < L(W, V) be an n-dimensional sub-
space. Assume Le P(W, VI\¥ and Ve ¥". Then Vye P, (L) if and only if

Jor every £>0 there exists me N, @,, .., ¢, cext Sy., and w, .., w, €Sy
such that
Oeconv{ig, ®@w,|v, .., @, ®w,|v} (2.1)
and
Z Al@@wHL—Vo)—IL=V,l | <¢, (2.2)

i=1

where 1,>0, " A, =1 (We set (¢,@w ) L)=¢(Lw,).)

i=1
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Proof. Fix ¢>0 and let =[L]@® 7. Since .Z is finite dimensional,
S, is a compact set. Hence there exist C,,..,C, €S, such that
S,cUr | BiAC,, ¢/3). (The symbol B,(x, r) denotes the closed ball with
a centre x and a radius r.) Select for each ie {1, .., m}, ¢,cextS,. and
w, €Sy, with

[ICill — @ ACiw)] <&f3. (23)

Denote Z,={p,®@w,:i=1,..,m} and T={p®@w: peext S,., weSy}.
Note that T is a total set over . Hence we can choose Z,c T,
Z,={(y,®u;)| 4 e Vs 1 ®u, )} ,} which forms a basis of #*. Put

Z=Z,02Z,, (2.4)

and let .# = I'Z = absolutely convex hull of Z. Since .# is an absolutely
convex absorbing set, we can define | I{ ,—the Minkowski functional of
the set .# which is a norm in #* Hence we can equip the space
(L*)* =2 with a norm ||4|, =max,, |y(4)]. It is easy to observe that
7l » =sup 4, <1 |¥(4)| and, consequently, || || , is the dual norm for | ||,
in £* Now we will show that for every A€ %, | |4 — |4].| <e ||4]l. Of
course, we can assume A4 # 0. Then

IT—=1CA/NADN =T HCH = 1A/ 14D |
STICH =G+ TICH, = IA/LADI 1,

where C, .S, is chosen so that |(4/]|4]|) — C,|| <¢/3. Hence

1= 1A/, [<NC— (A/1AD L+ TG =I1Cl |

<NCi— (47141 +€/3<(2/3) &,
since by (2.3)
[Cl.<ICll <@ (Ciw)+e/3<||Cll.+¢/3

(by (24), ¢,®@w,;e Z, = Z). Consequently,

ICA/ADT = IHA/TADI, | < 2¢/3
and

1Al =14l <e [4].
Hence we get immediately

(I1—e) l4l < l4f.<(1+e) 4]l
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From this, it is easy to deduce that
|dist(L, v) —dist(L, ¥ )| <e ||L|.

(dist, denotes the distance of L from ¥~ with respect to the || ||,.) Now let
Voe#, (L) (see 1.1} and let V,e #° (L) (the set of best approximants with
respect to the || ||,). By Theorem 1.3, Oeconv E(L— V)|, (see 1.1). It is
evident by the definition of | ||, that E(L—V,)c ), .k |oy~1 2Z. Hence
E(L-V)={¢,®wW |y, ... 0,®w,|,}, where g,cextS,. and w,eS,
for i=1, .., 1 Note that

e L] = |dist(L, ¥) —dist (L, ¥
=[IL=Vol—IL-=V,I,]|

!
:‘ IL— Vol — Z Al @w)L—-V,)

i=1

’

!
:’ IL— Vol — Z Al @w L —V,)

i=1

where 4,>0,%/_ A,=1,and ¥/_, 1,(¢,®w,)|, =0. This proves the first
part of the theorem (if ||L| ¢ 1 we can start from ¢/||L|]).
Now suppose, on the contrary, that V,¢ 2, (L) and condition (2.2) holds.

Put e =(J|L — V,|l —dist(L, ¥"))/2 and let V', € #, (L). Then

!
Z Ailp, @w )L —T)

=1

e+ IL=Vil<|L-V,l< +é,

which by (2.1) gives

!

Z A, @w) (L — Vl)’,

i=1

IL =Vl <

a contradiction.

Remark 2.2. In Theorem 2.1 the set ext §,.. can be replaced by any
norming set C< S;.. and S by any norming set D<= Sy.... (Aset Fc S,.
is called a norming set iff ||v| = sup,. p|f(v)| for every ve V)

Applying Theorem 2.1 we may prove a necessary condition for 7~ to be
a non-Chebyshev subspace. The method of the proof is similar to that
of [8].

THEOREM 2.3. Assume ¥ < L (W, V) is a non-Chebyshev finite-dimen-
sional subspace (we consider the real case). Then there exists De ¥, |D| =1
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such that for every ¢ >0 there exists [, .., f,eext Sy. and w, .., w,,€ W,
> will =1 such that

(a) G=37_,(fi®w)|, =0;
(b) if Fe L*(W,V)and |G+ F|<I then |F(D)| <e.
() T, I(fi®w)D)l<e.
Proof. Since 7~ is a non-Chebyshev subspace, there exists Le L(W, V)
such that 0, +De (L), | Dl =1. This will be the required D. Now fix

e>0. Applying Theorem 2.1, we can find f|, .., f,eext S, ., u, .., 4,€
Sws Al Ay=0, and 37 | A,=1 such that:

Y A fi®u), =0 (2.5)
i=1
and

Y A fi®u)L)—|IL| | <e/2. (2.6)
i=1

Put for i=1, .., m, w,= 1,u,. Now we check that |, .., f,, and w, .., w,,
satisfy (a), (b), (c). Note that condition (a) is guaranteed by (2.5). To
prove (b), fix Fe *(W, V), [F+G| <1. Hence (F+ G)(L)<|L|. Since
G|,,=0, G(L)xF(L-D)<|L-D|=|L|l. By (26), |F(L)|<¢/2 and
|F(L — D)| <¢/2. Hence |F(D)| <e.

To show (c¢), put

P={i:(f;®@w)D)=0},
P ={i: (fi@w)(D)>0}, (2.7)
U={i: (f;@w,)(D)<0}.

If U (P, resp.) is empty, then by (2.5) P, (U resp.) is empty and (c) holds

true. So assume that U and P, are nonempty. Hence, by (2.5),

2 fi@w)D) =3 [(f;®w)D)I.

ie P ielU
Now suppose that (c) does not hold. Then

Y I fi®@w)(D) =¢2

ieP
and
Y, [(fi®w)(D)| =¢/2. (2.8)

iel
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Put yp=3,cplwl and yp=3%,ccliwl. By (27), yp>0, y,>0, and
}’U‘l" yp: 1 Set

Si=) (i®@w)L),  S;=73, (f[@w)L)
ieP el
By (2.6) S, +S,>|IL||—¢/2. Thus either S, >ypp(lIL[I—¢/2) or S,>
y(IILl| —&/2). Suppose that S, > yp(|L|| —&/2). Then by (2.7) and (2.8)

2 (fi®w)L+D)>yplLl =y, lIL+Dl,

ie P

since 0 <y, < 1. But for each ie P,
(f[@w)NL+D)<|w,] IL+DJ. (2.9)

By summing both sides of (2.9) we get a contradiction.

If S,>p, (Ll —¢&/2) then a similar argument using U and L—D
provides a contradiction. The proof of Theorem 2.3 is complete.
Now we consider the case of strong unicity.

THEOREM 24. Let X be a normed real space and let V<X be an
n-dimensional subspace with a basis vy, .., v,. Let S < Sy. be a norming set.
Assume furthermore that there is 6 >0 such that for every set fi, .., [, of
linearly independent functionals from S

|det[ﬁ(vj)]i,j'—l.....nl>(5>0. (210)

(det A denotes the determinant of a matrix A.) Then each xe€ X has a
strongly unique best approximation in V.

Proof. Fix xe X\V and consider Z=[x]@ V. Since Z as a finitely
dimensional subspace is separable, we can assume that S is countable. By
the totality of S over Z, we can choose ko N such that {¢,, .., ¢,,} is total
over Z. Hence for each k =k, we can equip Z with a norm

hzlly =max,_, . |s;:(2)] (S= {S], 89, } ).

By (2.10) V with | || is an interpolating subspace of Z. Hence for k =k,
there exists v, € ¥ which is a SUBA (see 1.3) for x with respect to the || ||,.
By Theorem 1.3, Oeint conv E.(x —v,) |, (see 1.1). (We consider the set
E{x—v,) with respect to the | |,.) By Carathéodory’s theorem
0=S"*" 2% 5., where /%, ., f¥, e Ex(x—v;), A*>0,and ¥/ AF =1.
Passing to a subsequence if necessary, we can assume v, — vy, A¥ — A, and
Y- fieS,.
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It is evident that f;(x —v,)=|x —v,el and ¥7* A,f,[,=0. Now we
show that A,>0 for i=1,.,n+1. Note that 1,>0 for some
ige{l, .,n+1}, since Y A,=1, 4,20 for i=1,..,n+1. We can

i=1

assume i, =n+ 1. By the Cramer rule,

A=k Ak Ak for i=1,..,n, (2.11)

n+1 n+1

where
Af=(_1)i+l det[f;((vj)]jsl,...‘n. (=1, on+1, [0

Hence, by (2.11), 1/|A*| < M/5-2/ |4, .| for k sufficiently large and M >0
independent of k. Consequently, 4,=lim, ., A*>0. Now take we V'\{0}.
Since the set {f |y, .. [, 1|} is total over ¥V, f,(w)<O for some
ipe{l,..,n+1}. From this we derive that f(w)<0 for some
Seext{geS,.: g(x—vo)=|x—v,l}. An easy calculation shows that
feE(x—uvy,) (see 1.1). Note that a function G:S,3w—inf{g(w):
g€ E(x—vy)} is upper semicontinuous and, by the above reasoning,
G(w)<0 for every weS,. By the compactness of S, we get
sup{G(w): we S,} = —r<0. Now fix ve V\{0} and take fe E(x—v,)
with f(v/|vl]) < G(v/||v||) + r/2. Hence f(v/||v]]) < —r/2 and consequently
Sy < —r/2-v].

By Theorem 1.2, v, is a SUBA for x in ¥, which completes the proof of
the theorem.

Remark 2.5. By ([7, Theorem 3.3]) the term Jé in (2.10) is essential.
Here

S={e,®x:xeext S;«,e;eext S, }.

ExaMpPLE 2.6. Assume W= V=c,. Let A £(W, V) be so chosen that
for every ie N, xeext =,

[{Ax);| >d>0.

Then, by Theorem 24, each Le Z(W, V) has a strongly unique best
approximation in [A]. (The set S is the same as in Remark 2.5.)

EXAMPLE 2.7. Assume W=1, V=¢,. Let A€ Z(W, V) be represented
as an infinite matrix [A(i, j)], ;=\ , .. If there exists 6 >0 such that for
every i, je N |A(i, j)| >8>0, then each Le (W, V) possesses a strongly
unique best approximation in [ A]. Here

S={e;®e,:1,j=1,2,..,e,¢e€extS,}.
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3. STRONG UNICITY IN A (cq)

We start with the following.

THEOREM 3.1. Let ¥ < X' (cy) be a finite dimensional Chebyshev sub-
space. {The symbol K (c,) denotes the space of all compact operators from
co into ¢y, we consider the real case). Then each Le A (cy) has a strongly
unique best approximation in ¥

Proof. Assume that there exists Lye ¥ (¢o)\¥ such that Voe, (L,)
(see (1.2)) is not a SUBA for L, in ¥ . Put

I={ieN:|le;o(Lo— Vo)l =IlLo~ Vol }. (3.1)
(We denote e;{(x)=x, for xec,.) By [9],

ext S yu ., =ext Sp®@ext S,.. (3.2)
Hence
1Lo— Vol = (e, ® x')(Lo— V)

for all e,®x'e E(L,— V,) (see 1.1). Consequently, the set I is nonempty.
For each ie I define

Z,={xeextS;.: (e,®@x)(Ly— Vo) =IlLo— Voll}. (3.3)

Since Voe#, (Ly), by Theorem 1.1, for every Ve ¥ there exists ie and
x'e Z, such that
(e, ® x")(V)<0. (3.4)

Since V, i1s not a SUBA for L, and ¥ is finite dimensional, by
Theorem 1.2, there exists V', €S, such that for every iel and xe Z,

(e, ®x)(V,)=0. (35)
Now assume that we have constructed L e X (¢y) such that

L —al i <L (3.6)
for xe [0, ay) and

(e;®@x)(L)=|L| (3.7)
for every iel and x € Z,. By Theorem 1.1, (3.4), and (3.6), a¥V, € %, (L) for

every ae[0, ay), which contradicts the fact that ¥ is a Chebyshev sub-
space. So to finish the proof, it is necessary to construct an Le.#(cy)
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satisfying (3.6) and (3.7). To do this, fix ief and x=(x;, X, ..)€Z,. If
-1 IVili, k)| =0 (V' is represented by a matrix [ V,(i, k)1, -, , .) then
define

Li=(LG,k))por.2, . (3.8)
where
L(i, k)= Ly(i, k) — Vi, k).

(Here {[Lg(i, k)], -1 .. denote the matrix corresponding to L, and
[Voli, k)], k= 1., the matrix corresponding to V).
If 37, |Vi(i, k)] >0, then put
U;={keN: Ly(i, k) — Vo(i, k) = 0}. (3.9)
Since |le;o (Lo — V)| =dist(Ly, #)>0, U, # N. Put

F,={keN\U; x,=sgn V\(i,k)}, (3.10)
E;=N\(U,u F). (3.11)
Take y=(y,, ¥2, .., ) Eext S,. given by

X for keF,UE,;
Y=

3.12
—sgn V (i, k) for kelU,. ( )

By (3.9) and (3.12), (e,® y)}(Ly— Vo) = |Ly — V,ll. According to (3.5),

(e.®@(V)= 3 INGK)I— %, [Vii, k)| >0. (3.13)

keF; kelUiw E)

From this we derive F,# (J, since >, |V,(i, k)| > 0. Define for ke N,

o [ k) for kePF,
L(l’k)_{o for keN\F, (3.14)
and set L,=(L(i, 1), L(4, 2), ...). We show that for ac[0, 1), f21,
i IﬂL(i,k)—aVl(i,k)ISﬂ-Z |L(i, k). (3.15)

k=1 k=1

To do this, take any zeext S,,. If z, = x, for every k€ F; then
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@®)(V)=Y Mk zm=3 MG+ Y Vi k) z>0

k=1 ke F; ke E;u U

by (3.13). Hence

S (BLUK) —aV (i k) 2= Y. BLUK) 2~ Y V(i k) 2,
k=1

k=1 k=1

=8 Y L) —a- Y Vi k) z,
k=1

keF; =

<p

B aak

[L(i, k).
1

k

If z;, = —x, for some k€ F,, then the set F!={keF, x, = —z.} is non-
empty. Compute

@

S (BL(L k) — oV, (i, k) 2,
1

k=

= ¥ (BLU, k)~ V(i k) 24+ y (BLUi, k) —aV (i, k) =,

keF! ke FNFhUEU L,

=Y (a=pB) Vi, k) + Y (BL{i, kY — oV (i, k)) 2

keF! ke (FAFHUEUU,
<Y B0V kI+ 3 (B0 ViGKI+ Y —aVi k),
I\’EF} keF,\F) keEwU,
= Z ﬁlVl(i,kH_a'(Z [V, k)| + Z Vl(iak):k>
ke k; kekF; ke E,u U
<B- Y VG k)|
AkeF;
=g Y LG k)
k=1
(see 3.13).

Now if i¢ I then we define L;=(L(i, 1), L({, 2).., )} by

L{i, k)= Lg(i, k) — Vo(i, k) for k=12, ... (3.16)
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Finally observe that by the Schur theorem (see [4, p. 864]) for i >,
lle;e (Lo — Vo)l < dist(L,, ¥7)/2.
Hence the set 7 is finite and
M =sup;_y\,lie;o(Lo—= Vo)l <llLo— Voli. (3.17)

Following {3.15) for iel we can modify, if necessary, the rows L, defined
by (3.8) and (3.14), multiplying them by constants ;> 1 such that

IL;=aV (i, ) <Ll =a> Lo — Vll

for ae[0,1). Now choose a,e(0,1) such that M +ay< || L,— V,l|. By
(3.17), for ae[0, a,) and ie N\J,

ILi—a V(i )l < {Lo— Voll.

Hence, by following (3.8), (3.14), and (3.15), the operator L defined by
(3.8), (3.14), and (3.16) satisfies (3.6) for a€[0, a,) and (3.7) for all ie/
and x e Z,. The proof of Theorem 3.1 is complete.

Note that the unicity of best approximation for given Le X (¢,) in ¥~
does not force the strong unicity because of

EXAMPLE 32. Let L=[L(i,k)]), x_1... and V=[V(i k)], x_,. . be
defined by

. 0 if i1
L(l’k)—{l/k3 it i=1
0 if i#1
D%k f .

Vi k) = { OO) /k or i=1, k>1

Y (=12 for i=1, k=1
I=2

Let ¥ =[V]. We show that 0 is the unique best approximation for L in
¥". Take ae R\{0}. If «a>0, choose an even number k, such that
a/kd>1/ky. Let z=(z,, 25, ..) €ext S,= be given by
o1 if k#k,
Tl =1 i k=k,
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Then
IL—aV|=(e;®z)L—V)

R

Ms T

o, (LY, Ty —aV(1, 1))

-~

Il

‘ (L, D=V, 1)+ 2a/k g — 1/k3)

/

L(1,Iy=|IL —0f,
1
since 7%, V(1,1)=0. If a <0, choose k, odd such that —a/k?> 1/k;.

Reasoning as above we get |L—aV| >|L|. Hence 0e#, (L) is the
unique best approximation. However, E(L —0)={e, ® ([, 1, ..)} (see (3.2)
and (1.1)). Since ¢, ®(1, 1, ..)(¥V) =0, by Theorem 1.2 0 is not a SUBA for
Linv".

Remark 3.3. If we replace ¢y by {7, then by [3, Theorem 2.2(a)] or
[9] the set ext S .. m) 1s finite. By [6], if ¥7 is a subspace of A#°(/™) then
Le (1) has a unique best approximation in ¥ if and only if L has a
strongly unique best approximation in ¥".

>

g k!

~

CoroLLARY 34. If VeS . . then ¥ =[V] is a Chebyshev subspace if
and only if for every ie N and x eext §;-,

(e, @x)(V)#0. (3.18)
Comparing Corollary 3.4 with Theorem 3.3 of [7] we get
PROPOSITION 3.5. There exists
peextS . \le,®x:i=12, ., xeext S, }.

Proof. If ext S, .(co) = {(e,®x):i=1,2, ., xecext §,.} then by
Theorems 1.1 and 1.2 each V satisfying (3.18) defines a Chebyshev sub-
space in %(c¢,) which contradicts Theorem 3.3 of [7].

Proposition 3.5 shows that Theorem 2.2(a) of { 3] cannot be generalized
from the case compact operators to the case of linear operators.

At the end of this section we present an example of a two-dimensional
Chebyshev subspace in #(c¢,). The reasoning presented here is similar to
that of [1]. First we recall, after [1],

LEMMA 3.6. Let M>1 be given. Assume f(r)=37_,a,r" is a power
series whose coefficients are not all 0. Assume that if a,#0 then

I<la,|<M

Then for every re (0, 1/(M+ 1)), f(r)#0.
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Proof. Let N denote the smallest index » such that a, # 0. Then

¢

2lay-r"l— 3 la,lIr)”
n=N+1

/= ¥ a,r

>V =MV =)
= r| M1 = rD)(1 = |r}(1 + M))> 0.

ExampLE 3.7. Let ce(0, 1), re (0, 1/4). Define
V(i k)y=c' r¥" for k=12, .., (3.19)
for Lk=1,2,... (3.20)

Vi = (2 -
We show that V,, V, defined by (3.19) and (3.20) form a two-dimensional

interpolating (hence Chebyshev) subspace in #'(c,). To do this, take
¢ =e,®x,, p,=e,,®x, to be two linearly independent functionals from

ext S e, We prove that det[¢(V))], ;= ,#0. Let x;,= (0, 0, ...) for
j=1,2 (o6,= +1). Note that

2oV, ), ‘?C=10’1'V2(i1aj)
det[o@. (V)] ;-1 =det[ e
sih=ie Zj=102j Viliy, ), ijlazsz(lz’j)
_ i detlialjlVl(il!jl)valszZ(ihjZ):l
Jljaz 1 G2 Vl(l'z,jl),azszz(iz,]'z)
dor [T a2y
€ f a2+ . 222
. azjlc"rzz” ! 04,,(c/2)2 r?"

3

s
S
[

O Ci', Uljg(c/z)il
T2, c”, CTz,':(C'/z)i2 '

.
_ Z r22/,+1+2212+z.det[
jtsia=1
If 221+ 1 4 222 +2 = 32+ 1 4 922+2 hecause of the unique binary expres-
q Y €Xp

sion of each integer we get j, =k, and j, =k,. In particular, then, distinct
pairs (/,, j,) give distinct powers of r. Hence the above determinant can be

regarded as a power series with coefficients.

Gy et ‘71,'2(0/2)“]
G €7 0212(0/2)'2

Aj'x e det [

If i, =i, then

o

det[@(V))1i jor2=(c?/2)" 3,

Jui2=1

r22j|+l +22/2+ZB
s g2
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where

B;, ,=det [""f""‘-h} (321)

G2 102, hy

Since e, ® x,, e,® x, are linearly independent, not all B, , are equal to

0. Note that if B; , #0 then [B; ;[=2. If i, #/, (we may assume i; <i,)
then
detl @, (V)], =12 =" HL (12— (1271 3 B
=
where
B, = (1/[(1/2)" —(1/2)"])-det [Z; Z‘;HZ;] . (3.22)

It is clear that

L<IB, ) <TO/2)" + (12 1/[(1/2)" — (1/2)%)
= [+ (1725751 = (1/2) ]
<[+ -(1/2)] =3,

Applying Lemma 3.6 to the series

x
Z B r22/]+1+22;2+2

J1. 2 ’
Noja=1

where B, ;, are defined by (3.21) or (3.22), we get det[ ¢ (V))], ;_, . #0 as
required.
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