Best Approximation in Finite Dimensional Subspaces of $\mathscr{L}(W, V)$

Grzegorz Lewicki
Department of Mathematics, Jagiellonian University, $30-059$ Krakow, Reymonta 4, Poland

Communicated by E. W. Cheney
Received July 13, 1992; accepted in revised form March 14, 1994

Abstract

We prove Kolmogorov's type characterization of best approximation for given $L \in \mathscr{L}(W, V)$ in finite dimensional subspace $\mathscr{V} \subset \mathscr{L}(W, V)$. This extends the results obtained by Malbrock for the case $W=V=c_{0}$ and $W=C(T), V=C(S)$. © 1995 Academic Press, Inc.

1. Introduction

Let X be a normed space over a field $K(K=\mathbb{R}$ or $K=\mathbb{C})$ and let S_{X}. denote the unit sphere in X^{*}. For $x \in X$ put

$$
\begin{equation*}
E(x)=\left\{f \in \operatorname{ext} S_{X^{*}}: f(x)=\|x\|\right\} \tag{1.1}
\end{equation*}
$$

(ext W denotes the set of all extremal points of a given set W), and let for $Y \subset X$

$$
\begin{equation*}
\mathscr{P}_{Y}(x)=\{y \in Y:\|x-y\|=\operatorname{dist}(x, Y)\} . \tag{1.2}
\end{equation*}
$$

If Y is a linear subspace of X then the following Kolmogorov type characterization holds true.

Theorem 1.1 (see [2]). Assume X is a normed space, $Y \subset X$ is its linear subspace, and let $x \in X \backslash Y$. Then $y_{0} \in P_{Y}(x)$ if and only if for every $y \in Y$ there exists $f \in E\left(x-y_{0}\right)$ with $r e f(y) \leqslant 0$.

A similar result can be proved in the case of strong unicity. In order to present it, let us recall that an element $y \in Y$ is called a strongly unique best approximation (briefly, SUBA) for $x \in X$ if and only if there exists $r>0$ such that for every $y \in Y$,

$$
\begin{equation*}
\|x-y\| \geqslant\left\|x-y_{0}\right\|+r \cdot\left\|y-y_{0}\right\| . \tag{1.3}
\end{equation*}
$$

151
0021-9045/95\$6.00
Copyright 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.

In [11, Theorem 2.1, p. 855] the following was shown.
Theorem 1.2. Let $x \in X \backslash Y$ and let Y be a linear subspace of X. Then $y_{0} \in Y$ is a SUBA for x with a constant $r>0$ if and only if for every $y \in Y$ there exists $f \in E\left(x-y_{0}\right)$ with $\operatorname{ref}(y) \leqslant-r\|y\|$.

If Y is a finite dimensional subspace of X, then by [10, Theorem 1.1, p. 170] and Theorem 1.2 we get

Theorem 1.3. Assume X is a normed space and $Y \subset X$ is a finite-dimensional linear subspace, and let $x \in X \backslash Y$. Then $y \in P_{Y}(x)$ (resp., y is a SUBA for x in Y) if and only if $\left.0 \in \operatorname{conv} E(x-y)\right|_{Y}\left(\right.$ resp., $\left.0 \in \operatorname{intconv} E(x-y)\right|_{Y}$, where $\left.E(x-y)\right|_{y}=\left\{\left.f\right|_{Y}: f \in E(x-y)\right\}$). (The symbols conv A and int A denote respectively the smallest convex set containing A and the interior of A with respect to the norm topology.)

In this note we consider the case when $X=\mathscr{L}(W, V)$ (the space of all linear continuous operators from a normed space W into a normed space V equipped with the operator norm) and $\mathscr{V} \subset X$ is a finitedimensional subspace. We prove Kolmogorov's type characterization of best approximants (Theorem 2.1) which involves only elements from the sets S_{W} and ext $S_{V^{*}}$. (Note that a similar characterization for the case of compact operators was shown in [5].) We also present a result concerning strong unicity. This extends the results obtained in [7] and [8] for the spaces $W=V=c_{0}$ and $W=C(S), V=C(T)$. Next we characterize finitedimensional Chebyshev subspaces in the space $\mathscr{K}\left(c_{0}\right)$ of all compact operators going from c_{0} into c_{0}.

2. General Case

Now we formulate the main result of this section.

Theorem 2.1. Let W, V be arbitrary normed linear spaces (we consider the real and complex case) and let $\mathscr{V} \subset \mathscr{L}(W, V)$ be an n-dimensional subspace. Assume $L \in \mathscr{L}(W, V) \backslash \mathscr{r}$ and $V_{0} \in \mathscr{V}$. Then $V_{0} \in P_{y}(L)$ if and only if for every $\varepsilon>0$ there exists $m \in N, \varphi_{1}, \ldots, \varphi_{m} \in \operatorname{ext} S_{V^{*}}$, and $w_{1}, \ldots, w_{m} \in S_{W}$ such that

$$
\begin{equation*}
0 \in \operatorname{conv}\left\{\varphi_{1} \otimes w_{1}\left|v, \ldots, \varphi_{m} \otimes w_{m}\right| v\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=1}^{m} \lambda_{i}\left(\varphi_{i} \otimes w_{i}\right)\left(L-V_{0}\right)-\left\|L-V_{0}\right\|\right| \leqslant \varepsilon, \tag{2.2}
\end{equation*}
$$

where $\lambda_{i}>0, \sum_{i=1}^{m} \lambda_{i}=1$. (We set $\left.\left(\varphi_{i} \otimes w_{i}\right)(L)=\varphi_{i}\left(L w_{i}\right).\right)$

Proof. Fix $\varepsilon>0$ and let $\mathscr{L}=[L] \oplus \mathscr{V}$. Since \mathscr{L} is finite dimensional, $S_{\mathscr{L}}$ is a compact set. Hence there exist $C_{1}, \ldots, C_{m} \in S_{\mathscr{L}}$ such that $S_{\mathscr{L}} \subset \bigcup_{i=1}^{m} B_{d}\left(C_{i}, \varepsilon / 3\right)$. (The symbol $B_{d}(x, r)$ denotes the closed ball with a centre x and a radius r.) Select for each $i \in\{1, \ldots, m\}, \varphi_{i} \in \operatorname{ext} S_{V^{*}}$ and $w_{i} \in S_{W}$ with

$$
\begin{equation*}
\left|\left\|C_{i}\right\|-\varphi_{i}\left(C_{i} w_{i}\right)\right| \leqslant \varepsilon / 3 \tag{2.3}
\end{equation*}
$$

Denote $Z_{1}=\left\{\varphi_{i} \otimes w_{i}: i=1, \ldots, m\right\}$ and $T=\left\{\varphi \otimes w: \varphi \in \operatorname{ext} S_{V^{*}}, w \in S_{w}\right\}$. Note that $\left.T\right|_{\mathscr{L}}$ is a total set over \mathscr{L}. Hence we can choose $\left.Z_{2} \subset T\right|_{\mathscr{L}}$, $Z_{2}=\left\{\left.\left(\gamma_{1} \otimes u_{1}\right)\right|_{\mathscr{L}}, \ldots,\left.\left(\gamma_{n+1} \otimes u_{n+1}\right)\right|_{\mathscr{L}}\right\}$ which forms a basis of \mathscr{L}^{*}. Put

$$
\begin{equation*}
Z=Z_{1} \cup Z_{2} \tag{2.4}
\end{equation*}
$$

and let $\mathscr{M}=\Gamma Z=$ absolutely convex hull of Z. Since \mathscr{M} is an absolutely convex absorbing set, we can define $\|\|$-the Minkowski functional of the set \mathscr{M} which is a norm in \mathscr{L}^{*}. Hence we can equip the space $\left(\mathscr{L}^{*}\right)^{*}=\mathscr{L}$ with a norm $\|A\|_{\varepsilon}=\max _{\gamma \in Z}|\gamma(A)|$. It is easy to observe that $\|\gamma\|_{. /}=\sup _{\|A\|_{t} \leqslant 1}|\gamma(A)|$ and, consequently, $\left\|\|_{\mathscr{A}}\right.$ is the dual norm for $\| \|_{\varepsilon}$ in \mathscr{L}^{*}. Now we will show that for every $A \in \mathscr{L},\left|\|A\|-\|A\|_{\varepsilon}\right| \leqslant \varepsilon\|A\|$. Of course, we can assume $A \neq 0$. Then

$$
\begin{aligned}
\left|1-\|(A /\|A\|)\|_{\varepsilon}\right| & =\left|\left\|C_{i}\right\|-\|(A /\|A\|)\|_{\varepsilon}\right| \\
& \leqslant\left|\left\|C_{i}\right\|-\left\|C_{i}\right\|_{\varepsilon}\right|+\left|\left\|C_{i}\right\|_{\varepsilon}-\|(A /\|A\|)\|_{\varepsilon}\right|
\end{aligned}
$$

where $C_{i} \in S_{\mathscr{L}}$ is chosen so that $\left\|(A /\|A\|)-C_{i}\right\| \leqslant \varepsilon / 3$. Hence

$$
\begin{aligned}
\left|1-\|(A /\|A\|)\|_{\varepsilon}\right| & \leqslant\left\|C_{i}-(A /\|A\|)\right\|_{\varepsilon}+\left|\left\|C_{i}\right\|-\left\|C_{i}\right\|_{\varepsilon}\right| \\
& \leqslant\left\|C_{i}-(A /\|A\|)\right\|+\varepsilon / 3 \leqslant(2 / 3) \varepsilon
\end{aligned}
$$

since by (2.3)

$$
\left\|C_{i}\right\|_{\varepsilon} \leqslant\left\|C_{i}\right\| \leqslant \varphi_{i}\left(C_{i} w_{i}\right)+\varepsilon / 3 \leqslant\left\|C_{i}\right\|_{\varepsilon}+\varepsilon / 3
$$

(by (2.4), $\varphi_{i} \otimes w_{i} \in Z_{1} \subset Z$). Consequently,

$$
\left|\|(A /\|A\|)\|-\|(A /\|A\|)\|_{\varepsilon}\right| \leqslant 2 \varepsilon / 3
$$

and

$$
\left|\|A\|-\|A\|_{\varepsilon}\right|<\varepsilon\|A\| .
$$

Hence we get immediately

$$
(1-\varepsilon)\|A\| \leqslant\|A\|_{\varepsilon} \leqslant(1+\varepsilon)\|A\| .
$$

From this, it is easy to deduce that

$$
\left|\operatorname{dist}(L, v)-\operatorname{dist}_{\varepsilon}(L, \mathscr{V})\right| \leqslant \varepsilon\|L\| .
$$

(dist ${ }_{\varepsilon}$ denotes the distance of L from \mathscr{V} with respect to the $\left\|\|_{c}\right.$.) Now let $V_{0} \in \mathscr{P}_{\gamma}(L)$ (see 1.1) and let $V_{\varepsilon} \in \mathscr{P}_{y}^{\varepsilon}(L)$ (the set of best approximants with respect to the $\left\|\|_{\varepsilon}\right.$). By Theorem 1.3, $\left.0 \in \operatorname{conv} E_{\varepsilon}\left(L-V_{\varepsilon}\right)\right|_{\text {, }}$ (see 1.1). It is evident by the definition of $\left\|\|_{\varepsilon}\right.$ that $E_{\varepsilon}\left(L-V_{\varepsilon}\right) \subset \bigcup_{\alpha \in K,|\alpha|=1} \alpha Z$. Hence $E_{\varepsilon}\left(L-V_{\varepsilon}\right)=\left\{\left.\varphi_{1} \otimes w_{1}\right|_{\mathscr{L}^{\prime}}, \ldots,\left.\varphi_{l} \otimes w_{l}\right|_{\mathscr{L}^{\prime}}\right\}$, where $\varphi_{i} \in \operatorname{ext} S_{+}$. and $w_{i} \in S_{w}$ for $i=1, \ldots, l$. Note that

$$
\begin{aligned}
\varepsilon\|L\| & \geqslant\left|\operatorname{dist}(L, \mathscr{V})-\operatorname{dist}_{\varepsilon}(L, \mathscr{V})\right| \\
& =\left|\left\|L-V_{0}\right\|-\left\|L-V_{\varepsilon}\right\|_{\varepsilon}\right| \\
& =\left|\left\|L-V_{0}\right\|-\sum_{i=1}^{1} \lambda_{i}\left(\varphi_{i} \otimes w_{i}\right)\left(L-V_{\varepsilon}\right)\right| \\
& =\left|\left\|L-V_{0}\right\|-\sum_{i=1}^{1} \lambda_{i}\left(\varphi_{i} \otimes w_{i}\right)\left(L-V_{0}\right)\right|
\end{aligned}
$$

where $\lambda_{i}>0, \sum_{i=1}^{l} \lambda_{i}=1$, and $\left.\sum_{i=1}^{l} \lambda_{i}\left(\varphi_{i} \otimes w_{i}\right)\right|_{y}=0$. This proves the first part of the theorem (if $\|L\| \neq 1$ we can start from $\varepsilon /\|L\|$).
Now suppose, on the contrary, that $V_{0} \notin \mathscr{P}_{y}(L)$ and condition (2.2) holds. Put $\varepsilon=\left(\left\|L-V_{0}\right\|-\operatorname{dist}(L, \mathscr{Y})\right) / 2$ and let $V_{1} \in \mathscr{P}_{\gamma}(L)$. Then

$$
\varepsilon+\left\|L-V_{1}\right\|<\left\|L-V_{0}\right\| \leqslant\left|\sum_{i=1}^{1} \lambda_{i}\left(\varphi_{i} \otimes w_{i}\right)\left(L-V_{0}\right)\right|+\varepsilon
$$

which by (2.1) gives

$$
\left\|L-V_{1}\right\|<\left|\sum_{i=1}^{1} \lambda_{i}\left(\varphi_{i} \otimes w_{i}\right)\left(L-V_{1}\right)\right|
$$

a contradiction.
Remark 2.2. In Theorem 2.1 the set ext $S_{V^{*}}$ can be replaced by any norming set $C \subset S_{V^{*}}$ and $S_{W^{*}}$ by any norming set $D \subset S_{W^{* *}}$ (A set $F \subset S_{V^{*}}$ is called a norming set iff $\|v\|=\sup _{f \in F}|f(v)|$ for every $v \in V$.)

Applying Theorem 2.1 we may prove a necessary condition for \mathscr{V} to be a non-Chebyshev subspace. The method of the proof is similar to that of [8].

Theorem 2.3. Assume $\mathscr{V} \subset \mathscr{L}(W, V)$ is a non-Chebyshev finite-dimensional subspace (we consider the real case). Then there exists $D \in \mathscr{Y},\|D\|=1$
such that for every $\varepsilon>0$ there exists $f_{1}, \ldots, f_{m} \in \operatorname{ext} S_{V *}$ and $w_{1}, \ldots, w_{m} \in W$, $\sum_{i=1}^{m}\left\|w_{i}\right\|=1$ such that
(a) $G=\left.\sum_{i=1}^{m}\left(f_{i} \otimes w_{i}\right)\right|_{y}=0$;
(b) if $F \in \mathscr{L}^{*}(W, V)$ and $\|G \pm F\| \leqslant 1$ then $|F(D)|<\varepsilon$.
(c) $\sum_{i=1}^{m}\left|\left(f_{i} \otimes w_{i}\right)(D)\right|<\varepsilon$.

Proof. Since \mathscr{V} is a non-Chebyshev subspace, there exists $L \in \mathscr{L}(W, V)$ such that $0, \pm D \in \mathscr{P}_{x}(L),\|D\|=1$. This will be the required D. Now fix $\varepsilon>0$. Applying Theorem 2.1, we can find $f_{1}, \ldots, f_{m} \in \operatorname{ext} S_{V^{*}}, u_{1}, \ldots, u_{m} \in$ $S_{W}, \lambda_{1}, \ldots, \lambda_{m} \geqslant 0$, and $\sum_{i=1}^{m} \lambda_{i}=1$ such that:

$$
\begin{equation*}
\left.\sum_{i=1}^{m} \lambda_{i}\left(f_{i} \otimes u_{i}\right)\right|_{r}=0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=1}^{m} \lambda_{i}\left(f_{i} \otimes u_{i}\right)(L)-\|L\|\right|<\varepsilon / 2 . \tag{2.6}
\end{equation*}
$$

Put for $i=1, \ldots, m, w_{i}=\lambda_{i} u_{i}$. Now we check that f_{1}, \ldots, f_{m} and w_{1}, \ldots, w_{m} satisfy (a), (b), (c). Note that condition (a) is guaranteed by (2.5). To prove (b), fix $F \in \mathscr{L}^{*}(W, V),\|F \pm G\| \leqslant 1$. Hence $(F \pm G)(L) \leqslant\|L\|$. Since $\left.G\right|_{r}=0, \quad G(L) \pm F(L-D) \leqslant\|L-D\|=\|L\|$. By (2.6), $|F(L)|<\varepsilon / 2$ and $|F(L-D)|<\varepsilon / 2$. Hence $|F(D)|<\varepsilon$.

To show (c), put

$$
\begin{align*}
P & =\left\{i:\left(f_{i} \otimes w_{i}\right)(D) \geqslant 0\right\}, \\
P_{1} & =\left\{i:\left(f_{i} \otimes w_{i}\right)(D)>0\right\}, \tag{2.7}\\
U & =\left\{i:\left(f_{i} \otimes w_{i}\right)(D)<0\right\} .
\end{align*}
$$

If U (P_{1} resp.) is empty, then by (2.5) P_{1} (U resp.) is empty and (c) holds true. So assume that U and P_{1} are nonempty. Hence, by (2.5),

$$
\sum_{i \in P}\left|\left(f_{i} \otimes w_{i}\right)(D)\right|=\sum_{i \in U}\left|\left(f_{i} \otimes w_{i}\right)(D)\right|
$$

Now suppose that (c) does not hold. Then

$$
\sum_{i \in P}\left|\left(f_{i} \otimes w_{i}\right)(D)\right| \geqslant \varepsilon / 2
$$

and

$$
\begin{equation*}
\sum_{i \in U}\left|\left(f_{i} \otimes w_{i}\right)(D)\right| \geqslant \varepsilon / 2 . \tag{2.8}
\end{equation*}
$$

Put $\gamma_{P}=\sum_{i \in P}\left\|w_{i}\right\|$ and $\gamma_{U}=\sum_{i \in U}\left\|w_{i}\right\|$. By (2.7), $\gamma_{P}>0, \gamma_{U}>0$, and $\gamma_{U^{\prime}}+\gamma_{P}=1$. Set

$$
S_{1}=\sum_{i \in P}\left(f_{i} \otimes w_{i}\right)(L), \quad S_{2}=\sum_{i \in U}\left(f_{i} \otimes w_{i}\right)(L) .
$$

By (2.6) $S_{1}+S_{2}>\|L\|-\varepsilon / 2$. Thus either $S_{1}>\gamma_{p}(\|L\|-\varepsilon / 2)$ or $S_{2}>$ $\gamma_{L^{\prime}}(\|L\|-\varepsilon / 2)$. Suppose that $S_{1}>\gamma_{p}(\|L\|-\varepsilon / 2)$. Then by (2.7) and (2.8)

$$
\sum_{i \in P}\left(f_{i} \otimes w_{i}\right)(L+D)>\gamma_{P}\|L\|=\gamma_{P}\|L+D\|,
$$

since $0<\gamma_{P}<1$. But for each $i \in P$,

$$
\begin{equation*}
\left(f_{i} \otimes w_{i}\right)(L+D) \leqslant\left\|w_{i}\right\|\|L+D\| . \tag{2.9}
\end{equation*}
$$

By summing both sides of (2.9) we get a contradiction.
If $S_{2}>\gamma_{U}(\|L\|-\varepsilon / 2)$ then a similar argument using U and $L-D$ provides a contradiction. The proof of Theorem 2.3 is complete.

Now we consider the case of strong unicity.
Theorem 2.4. Let X be a normed real space and let $V \subset X$ be an n-dimensional subspace with a basis v_{1}, \ldots, v_{n}. Let $S \subset S_{X}$. be a norming set. Assume furthermore that there is $\delta>0$ such that for every set f_{1}, \ldots, f_{n} of linearly independent functionals from S

$$
\begin{equation*}
\left|\operatorname{det}\left[f_{i}\left(v_{j}\right)\right]_{i, j=1, \ldots, n}\right|>\delta>0 \tag{2.10}
\end{equation*}
$$

($\operatorname{det} A$ denotes the determinant of a matrix A.) Then each $x \in X$ has a strongly unique best approximation in V.

Proof. Fix $x \in X \backslash V$ and consider $Z=[x] \oplus V$. Since Z as a finitely dimensional subspace is separable, we can assume that S is countable. By the totality of S over Z, we can choose $k_{0} \in N$ such that $\left\{\phi_{1}, \ldots, \phi_{k_{0}}\right\}$ is total over Z. Hence for each $k \geqslant k_{0}$ we can equip Z with a norm

$$
\|z\|_{k}=\max _{i=1, \ldots k}\left|s_{i}(z)\right| \quad\left(S=\left\{s_{1}, s_{2}, \ldots\right\}\right)
$$

By (2.10) V with $\left\|\|_{k}\right.$ is an interpolating subspace of Z. Hence for $k \geqslant k_{0}$ there exists $v_{k} \in V$ which is a SUBA (see 1.3) for x with respect to the $\left\|\|_{k}\right.$. By Theorem 1.3, $0 \in$ int conv $\left.E_{k}\left(x-v_{k}\right)\right|_{v}$ (see 1.1). (We consider the set $E_{k}\left(x-v_{k}\right)$ with respect to the $\left\|\|_{k}\right.$.) By Carathéodory's theorem $0=\left.\sum_{i=1}^{n+1} \lambda_{i}^{k} f_{i}^{k}\right|_{v}$, where $f_{1}^{k}, \ldots, f_{n+1}^{k} \in E_{k}\left(x-v_{k}\right), \lambda_{i}^{k}>0$, and $\sum_{i=1}^{n+1} \lambda_{i}^{k}=1$. Passing to a subsequence if necessary, we can assume $v_{k} \rightarrow v_{0}, \lambda_{i}^{k} \rightarrow \lambda_{i}$, and $f_{i}^{k} \rightarrow f_{i} \in S_{Z^{*}}$.

It is evident that $f_{i}\left(x-v_{0}\right)=\left\|x-v_{0}\right\|$ and $\left.\sum_{i=1}^{n+1} \lambda_{i} f_{i}\right|_{V}=0$. Now we show that $\lambda_{i}>0$ for $i=1, \ldots, n+1$. Note that $\lambda_{i_{0}}>0$ for some $i_{0} \in\{1, \ldots, n+1\}$, since $\sum_{i=1}^{n+1} \lambda_{i}=1, \lambda_{i} \geqslant 0$ for $i=1, \ldots, n+1$. We can assume $i_{0}=n+1$. By the Cramer rule,

$$
\begin{equation*}
\lambda_{i}^{k}=\lambda_{n+1}^{k} \cdot \Delta_{i}^{k} / A_{n+1}^{k} \quad \text { for } \quad i=1, \ldots, n \tag{2.11}
\end{equation*}
$$

where

$$
\Delta_{i}^{k}=(-1)^{i+1} \operatorname{det}\left[f_{l}^{k}\left(v_{j}\right)\right]_{j=1, \ldots, n, l=1, \ldots, n+1, l \neq i}
$$

Hence, by (2.11), $1 /\left|\lambda_{i}^{k}\right| \leqslant M / \delta \cdot 2 /\left|\lambda_{n+1}\right|$ for k sufficiently large and $M>0$ independent of k. Consequently, $\lambda_{i}=\lim _{k \rightarrow \infty} \lambda_{i}^{k}>0$. Now take $w \in V \backslash\{0\}$. Since the set $\left\{\left.f_{1}\right|_{V}, \ldots,\left.f_{n+1}\right|_{V}\right\}$ is total over $V, f_{i 0}(w)<0$ for some $i_{0} \in\{1, \ldots, n+1\}$. From this we derive that $f(w)<0$ for some $f \in \operatorname{ext}\left\{g \in S_{Z^{*}}: g\left(x-v_{0}\right)=\left\|x-v_{0}\right\|\right\}$. An easy calculation shows that $f \in E\left(x-v_{0}\right)$ (see 1.1). Note that a function $G: S_{V} \ni w \rightarrow \inf \{g(w)$: $\left.g \in E\left(x-v_{0}\right)\right\}$ is upper semicontinuous and, by the above reasoning, $G(w)<0$ for every $w \in S_{V}$. By the compactness of S_{V} we get $\sup \left\{G(w): w \in S_{V}\right\}=-r<0$. Now fix $v \in V \backslash\{0\}$ and take $f \in E\left(x-v_{0}\right)$ with $f(v /\|v\|)<G(v /\|v\|)+r / 2$. Hence $f(v /\|v\|)<-r / 2$ and consequently $f(v)<-r / 2 \cdot\|v\|$.

By Theorem 1.2, v_{0} is a SUBA for x in V, which completes the proof of the theorem.

Remark 2.5. By ([7, Theorem 3.3]) the term δ in (2.10) is essential. Here

$$
S=\left\{e_{i} \otimes x: x \in \operatorname{ext} S_{l^{x}}, e_{i} \in \operatorname{ext} S_{l_{1}}\right\}
$$

Example 2.6. Assume $W=V=c_{0}$. Let $A \in \mathscr{L}(W, V)$ be so chosen that for every $i \in N, x \in \operatorname{ext} S_{I^{\infty}}$,

$$
\left|(A x)_{i}\right|>\delta>0
$$

Then, by Theorem 2.4, each $L \in \mathscr{L}(W, V)$ has a strongly unique best approximation in [A]. (The set S is the same as in Remark 2.5.)

Example 2.7. Assume $W=l_{1}, V=c_{0}$. Let $A \in \mathscr{L}(W, V)$ be represented as an infinite matrix $[A(i, j)]_{i, j=1,2, \ldots}$. If there exists $\delta>0$ such that for every $i, j \in N|A(i, j)|>\delta>0$, then each $L \in \mathscr{L}(W, V)$ possesses a strongly unique best approximation in [A]. Here

$$
S=\left\{e_{i} \otimes e_{j}: i, j=1,2, \ldots, e_{i}, e_{j} \in \operatorname{ext} S_{l}\right\}
$$

3. Strong Unicity in $\mathscr{K}\left(c_{0}\right)$

We start with the following

Theorem 3.1. Let $\mathscr{V} \subset \mathscr{K}\left(c_{0}\right)$ be a finite dimensional Chebyshev subspace. (The symbol $\mathscr{K}\left(c_{0}\right)$ denotes the space of all compact operators from c_{0} into c_{0}; we consider the real case $)$. Then each $L \in \mathscr{K}\left(c_{0}\right)$ has a strongly unique best approximation in \mathscr{V}.

Proof. Assume that there exists $L_{0} \in \mathscr{K}\left(c_{0}\right) \backslash \mathscr{V}$ such that $V_{0} \in \mathscr{P}_{y}\left(L_{0}\right)$ (see (1.2)) is not a SUBA for L_{0} in \mathscr{V}. Put

$$
\begin{equation*}
I=\left\{i \in N:\left\|e_{i} \circ\left(L_{0}-V_{0}\right)\right\|=\left\|L_{0}-V_{0}\right\|\right\} . \tag{3.1}
\end{equation*}
$$

(We denote $e_{i}(x)=x_{i}$ for $x \in c_{0}$.) By [9],

$$
\begin{equation*}
\operatorname{ext} S_{\mathscr{K}\left(c_{0}\right)}=\operatorname{ext} S_{l^{\prime}} \otimes \operatorname{ext} S_{l^{x}} \tag{3.2}
\end{equation*}
$$

Hence

$$
\left\|L_{0}-V_{0}\right\|=\left(e_{i} \otimes x^{i}\right)\left(L_{0}-V_{0}\right)
$$

for all $e_{i} \otimes x^{i} \in E\left(L_{0}-V_{0}\right)$ (see 1.1). Consequently, the set I is nonempty. For each $i \in I$ define

$$
\begin{equation*}
Z_{i}=\left\{x \in \operatorname{ext} S_{l^{x}}:\left(e_{i} \otimes x\right)\left(L_{0}-V_{0}\right)=\left\|L_{0}-V_{0}\right\|\right\} . \tag{3.3}
\end{equation*}
$$

Since $V_{0} \in \mathscr{P}_{1}\left(L_{0}\right)$, by Theorem 1.1, for every $V \in \mathscr{V}$ there exists $i \in I$ and $x^{i} \in Z_{i}$ such that

$$
\begin{equation*}
\left(e_{i} \otimes x^{i}\right)(V) \leqslant 0 \tag{3.4}
\end{equation*}
$$

Since V_{0} is not a SUBA for L_{0} and \mathscr{V} is finite dimensional, by Theorem 1.2, there exists $V_{1} \in S_{y}$. such that for every $i \in I$ and $x \in Z_{i}$

$$
\begin{equation*}
\left(e_{i} \otimes x\right)\left(V_{1}\right) \geqslant 0 . \tag{3.5}
\end{equation*}
$$

Now assume that we have constructed $L \in \mathscr{K}\left(c_{0}\right)$ such that

$$
\begin{equation*}
\left\|L-\alpha V_{\mathbf{1}}\right\| \leqslant\|L\| \tag{3.6}
\end{equation*}
$$

for $\alpha \in\left[0, x_{0}\right)$ and

$$
\begin{equation*}
\left(e_{i} \otimes x\right)(L)=\|L\| \tag{3.7}
\end{equation*}
$$

for every $i \in I$ and $x \in Z_{i}$. By Theorem 1.1, (3.4), and (3.6), $\alpha V_{1} \in \mathscr{P}_{P}(L)$ for every $\alpha \in\left[0, \alpha_{0}\right)$, which contradicts the fact that \mathscr{V} is a Chebyshev subspace. So to finish the proof, it is necessary to construct an $L \in \mathscr{K}\left(c_{0}\right)$
satisfying (3.6) and (3.7). To do this, fix $i \in I$ and $x=\left(x_{1}, x_{2}, \ldots\right) \in Z_{i}$. If $\sum_{k=1}^{\infty}\left|V_{1}(i, k)\right|=0\left(V_{1}\right.$ is represented by a matrix $\left.\left[V_{1}(i, k)\right]_{i, k=1,2, \ldots}\right)$ then define

$$
\begin{equation*}
L_{i}=(L(i, k))_{k=1,2} \ldots, \tag{3.8}
\end{equation*}
$$

where

$$
L(i, k)=L_{0}(i, k)-V_{0}(i, k)
$$

(Here $\left[L_{0}(i, k)\right]_{i, k=1,2, \ldots}$ denote the matrix corresponding to L_{0} and $\left[V_{0}(i, k)\right]_{i, k=1,2, \ldots}$ the matrix corresponding to V_{0}).

If $\sum_{k=1}^{\infty}\left|V_{1}(i, k)\right|>0$, then put

$$
\begin{equation*}
U_{i}=\left\{k \in N: L_{0}(i, k)-V_{0}(i, k)=0\right\} \tag{3.9}
\end{equation*}
$$

Since $\left\|e_{i} \circ\left(L_{0}-V_{0}\right)\right\|=\operatorname{dist}\left(L_{0}, \mathscr{V}\right)>0, U_{i} \neq N$. Put

$$
\begin{align*}
& F_{i}=\left\{k \in N \backslash U_{i}: x_{k}=\operatorname{sgn} V_{1}(i, k)\right\}, \tag{3.10}\\
& E_{i}=N \backslash\left(U_{i} \cup F_{i}\right) . \tag{3.11}
\end{align*}
$$

Take $y=\left(y_{1}, y_{2}, \ldots,\right) \in \operatorname{ext} S_{l^{x}}$ given by

$$
y_{k}=\left\{\begin{array}{lll}
x_{k} & \text { for } & k \in F_{i} \cup E_{i} \tag{3.12}\\
-\operatorname{sgn} V_{1}(i, k) & \text { for } & k \in U_{i} .
\end{array}\right.
$$

By (3.9) and (3.12), $\left(e_{i} \otimes y\right)\left(L_{0}-V_{0}\right)=\left\|L_{0}-V_{0}\right\|$. According to (3.5),

$$
\begin{equation*}
\left(e_{i} \otimes y\right)\left(V_{1}\right)=\sum_{k \in F_{i}}\left|V_{1}(i, k)\right|-\sum_{k \in\left(U_{i} \cup E_{i}\right)}\left|V_{1}(i, k)\right| \geqslant 0 . \tag{3.13}
\end{equation*}
$$

From this we derive $F_{i} \neq \varnothing$, since $\sum_{k=1}^{\infty}\left|V_{1}(i, k)\right|>0$. Define for $k \in N$,

$$
L(i, k)=\left\{\begin{array}{lll}
V_{1}(i, k) & \text { for } & k \in F_{i} \tag{3.14}\\
0 & \text { for } & k \in N \backslash F_{i}
\end{array}\right.
$$

and set $L_{i}=(L(i, 1), L(i, 2), \ldots)$. We show that for $\alpha \in[0,1), \beta \geqslant 1$,

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\beta L(i, k)-\alpha V_{1}(i, k)\right| \leqslant \beta \cdot \sum_{k=1}^{\infty}|L(i, k)| . \tag{3.15}
\end{equation*}
$$

To do this, take any $z \in \operatorname{ext} S_{l \infty}$. If $z_{k}=x_{k}$ for every $k \in F_{i}$ then

$$
\left(e_{i} \otimes z\right)\left(V_{1}\right)=\sum_{k=1}^{\infty} V_{1}(i, k) z_{k}=\sum_{k \in F_{i}}\left|V_{1}(i, k)\right|+\sum_{k \in E_{i} \cup U_{i}} V_{1}(i, k) z_{k} \geqslant 0
$$

by (3.13). Hence

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left(\beta L(i, k)-\alpha V_{1}(i, k)\right) z_{k} & =\sum_{k=1}^{\infty} \beta L(i, k) z_{k}-\alpha \cdot \sum_{k=1}^{\infty} V_{1}(i, k) z_{k} \\
& =\beta \cdot \sum_{k \in F_{i}}|L(i, k)|-\alpha \cdot \sum_{k=1}^{\infty} V_{1}(i, k) z_{k} \\
& \leqslant \beta \cdot \sum_{k=1}^{\infty}|L(i, k)| .
\end{aligned}
$$

If $z_{k}=-x_{k}$ for some $k \in F_{i}$, then the set $F_{i}^{1}=\left\{k \in F_{i}: x_{k}=-z_{k}\right\}$ is nonempty. Compute

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(\beta L(i, k)-\alpha V_{1}(i, k)\right) z_{k} \\
& =\sum_{k \in F_{i}^{\prime}}\left(\beta L(i, k)-\alpha V_{1}(i, k)\right) z_{k}+\sum_{k \in\left(F_{i} \backslash F_{i}^{\prime}\right) \cup E_{i} \cup U_{i}}\left(\beta L(i, k)-\alpha V_{1}(i, k)\right) z_{k} \\
& =\sum_{k \in F_{i}^{\prime}}(\alpha-\beta)\left|V_{1}(i, k)\right|+\sum_{\left.k \in F_{i} \backslash F_{i}^{\prime}\right) \cup E_{i} \cup U_{i}}\left(\beta L(i, k)-\alpha V_{1}(i, k)\right) z_{k} \\
& \leqslant \sum_{k \in F_{i}^{\prime}}(\beta-\alpha)\left|V_{1}(i, k)\right|+\sum_{k \in F_{i} \not F_{l}^{\prime}}(\beta-\alpha)\left|V_{1}(i, k)\right|+\sum_{k \in E_{i} \cup U_{1}}-\alpha V_{1}(i, k) z_{k} \\
& =\sum_{k \in F_{i}} \beta\left|V_{1}(i, k)\right|-\alpha \cdot\left(\sum_{k \in F_{i}}\left|V_{1}(i, k)\right|+\sum_{k \in E_{i} \cup U_{i}} V_{1}(i, k) z_{k}\right) \\
& \leqslant \beta \cdot \sum_{k \in F_{i}} \mid\left(V_{1}(i, k) \mid\right. \\
& =\beta \cdot \sum_{k=1}^{\infty}|L(i, k)|
\end{aligned}
$$

(see 3.13).
Now if $i \notin I$ then we define $L_{i}=(L(i, 1), L(i, 2) \ldots$,$) by$

$$
\begin{equation*}
L(i, k)=L_{0}(i, k)-V_{0}(i, k) \quad \text { for } \quad k=1,2, \ldots \tag{3.16}
\end{equation*}
$$

Finally observe that by the Schur theorem (see [4, p. 864]) for $i \geqslant i_{0}$

$$
\left\|e_{i} \circ\left(L_{0}-V_{0}\right)\right\| \leqslant \operatorname{dist}\left(L_{0}, \mathscr{V}\right) / 2
$$

Hence the set I is finite and

$$
\begin{equation*}
M=\sup _{i \in N \backslash \backslash}\left\|e_{i} \circ\left(L_{0}-V_{0}\right)\right\|<\left\|L_{0}-V_{0}\right\| . \tag{3.17}
\end{equation*}
$$

Following (3.15) for $i \in I$ we can modify, if necessary, the rows L_{i} defined by (3.8) and (3.14), multiplying them by constants $\beta_{i} \geqslant 1$ such that

$$
\left\|L_{i}-\alpha V_{1}(i, \cdot)\right\|_{1}<\left\|L_{i}\right\|_{1}=a>\left\|L_{0}-V_{0}\right\|
$$

for $\alpha \in[0,1)$. Now choose $\alpha_{0} \in(0,1)$ such that $M+\alpha_{0}<\left\|L_{0}-V_{0}\right\|$. By (3.17), for $\alpha \in\left[0, \alpha_{0}\right)$ and $i \in N \backslash I$,

$$
\left\|L_{i}-\alpha V_{1}(i,)\right\|_{1}<\left\|L_{0}-V_{0}\right\| .
$$

Hence, by following (3.8), (3.14), and (3.15), the operator L defined by (3.8), (3.14), and (3.16) satisfies (3.6) for $\alpha \in\left[0, \alpha_{0}\right.$) and (3.7) for all $i \in I$ and $x \in Z_{i}$. The proof of Theorem 3.1 is complete.

Note that the unicity of best approximation for given $L \in \mathscr{K}\left(c_{0}\right)$ in \mathscr{V} does not force the strong unicity because of

Example 3.2. Let $\dot{L}=[L(i, k)]_{i, k=1,2, \ldots}$ and $V=[V(i, k)]_{i, k=1,2, \ldots}$ be defined by

$$
\begin{aligned}
& L(i, k)=\left\{\begin{array}{lll}
0 & \text { if } i \neq 1 \\
1 / k^{3} & \text { if } i=1
\end{array}\right. \\
& V(i, k)=\left\{\begin{array}{lll}
0 & \text { if } i \neq 1 \\
(-1)^{k} / k^{2} & \text { for } i=1, & k>1 \\
-\sum_{l=2}^{\infty}(-1)^{t} / l^{2} & \text { for } i=1, & k=1
\end{array}\right.
\end{aligned}
$$

Let $\mathscr{V}=[V]$. We show that 0 is the unique best approximation for L in \mathscr{V}. Take $\alpha \in R \backslash\{0\}$. If $\alpha>0$, choose an even number k_{0} such that $\alpha / k_{0}^{2}>1 / k_{0}^{3}$. Let $z=\left(z_{1}, z_{2}, \ldots\right) \in \operatorname{ext} S_{1} \times$ be given by

$$
z_{k}=\left\{\begin{array}{lll}
1 & \text { if } & k \neq k_{0} \\
-1 & \text { if } & k=k_{0}
\end{array}\right.
$$

Then

$$
\begin{aligned}
\|L-\alpha V\| & \geqslant\left(e_{1} \otimes z\right)(L-V) \\
& =\sum_{l=1}^{\infty} z_{l}(L(1, l)-\alpha V(1, l)) \\
& =\sum_{l=1}^{\infty}(L(1, l)-V(1, l))+2\left(\alpha / k_{0}^{2}-1 / k_{0}^{3}\right) \\
& >\sum_{l=1}^{\infty} L(1, l)=\|L-0\|
\end{aligned}
$$

since $\sum_{i=1}^{\infty} V(1, l)=0$. If $\alpha<0$, choose k_{0} odd such that $-\alpha / k_{0}^{2}>1 / k_{0}^{3}$.
Reasoning as above we get $\|L-\alpha V\|>\|L\|$. Hence $0 \in \mathscr{P},(L)$ is the unique best approximation. However, $E(L-0)=\left\{e_{1} \otimes(1,1, \ldots)\right\}$ (see (3.2) and $(1.1))$. Since $e_{1} \otimes(1,1, \ldots)(V)=0$, by Theorem 1.20 is not a SUBA for L in r.

Remark 3.3. If we replace c_{0} by l_{∞}^{m}, then by [3, Theorem 2.2(a)] or [9] the set ext $S_{\mathscr{*} \cdot\left(l_{x}^{m}\right)}$ is finite. By [6], if \mathscr{r} is a subspace of $\mathscr{K}\left(l_{x}^{m}\right)$ then $L \in \mathscr{K}\left(l_{r_{x}}^{m}\right)$ has a unique best approximation in \mathscr{V} if and only if L has a strongly unique best approximation in \mathscr{V}.

Corollary 3.4. If $V \in S_{\mathscr{X (c _ { 0 })}}$ then $\mathscr{V}=[V]$ is a Chebyshev subspace if and only if for every $i \in N$ and $x \in \operatorname{ext} S_{l^{x}}$,

$$
\begin{equation*}
\left(e_{i} \otimes x\right)(V) \neq 0 \tag{3.18}
\end{equation*}
$$

Comparing Corollary 3.4 with Theorem 3.3 of [7] we get

Proposition 3.5. There exists

$$
\varphi \in \operatorname{ext} S_{\mathscr{L}^{*}((0))} \backslash\left\{e_{i} \otimes x: i=1,2, \ldots, x \in \operatorname{ext} S_{i \times}\right\}
$$

Proof. If ext $S_{\mathscr{P}^{*}}\left(c_{0}\right) \subset\left\{\left(e_{i} \otimes x\right): i=1,2, \ldots, x \in \operatorname{ext} S_{1 \times}\right\}$ then by Theorems 1.1 and 1.2 each V satisfying (3.18) defines a Chebyshev subspace in $\mathscr{L}\left(c_{0}\right)$ which contradicts Theorem 3.3 of [7].

Proposition 3.5 shows that Theorem 2.2(a) of [3] cannot be generalized from the case compact operators to the case of linear operators.

At the end of this section we present an example of a two-dimensional Chebyshev subspace in $\mathscr{K}\left(c_{0}\right)$. The reasoning presented here is similar to that of [1]. First we recall, after [1],

Lemma 3.6. Let $M>1$ be given. Assume $f(r)=\sum_{n=0}^{\infty} a_{n} r^{n}$ is a power series whose coefficients are not all 0 . Assume that if $a_{n} \neq 0$ then

$$
1 \leqslant\left|a_{n}\right| \leqslant M .
$$

Then for every $r \in(0,1 /(M+1)), f(r) \neq 0$.

Proof. Let N denote the smallest index n such that $a_{n} \neq 0$. Then

$$
\begin{aligned}
|f(r)| & =\left|\sum_{n=N}^{\infty} a_{n} r^{n}\right| \geqslant\left|a_{N} \cdot r^{N}\right|-\sum_{n=N+1}^{\infty}\left|a_{n}\right||r|^{n} \\
& \geqslant|r|^{N}-M|r|^{N+1} /(1-|r|) \\
& =|r|^{N} /(1-|r|)(1-|r|(1+M))>0 .
\end{aligned}
$$

Example 3.7. Let $c \in(0,1), r \in(0,1 / 4)$. Define

$$
\begin{array}{ll}
V_{1}(i, k)=c^{i} \cdot r^{2^{2 k+1}} & \text { for } i, k=1,2, \ldots \\
V_{2}(i, k)=(c / 2)^{i} \cdot r^{2^{2 k+2}} & \text { for } i, k=1,2, \ldots \tag{3.20}
\end{array}
$$

We show that V_{1}, V_{2} defined by (3.19) and (3.20) form a two-dimensional interpolating (hence Chebyshev) subspace in $\mathscr{K}\left(c_{0}\right)$. To do this, take $\varphi_{1}=e_{i_{1}} \otimes x_{1}, \varphi_{2}=e_{i_{2}} \otimes x_{2}$ to be two linearly independent functionals from ext $S_{\mathscr{K}^{*}\left(c_{0}\right)}$. We prove that $\operatorname{det}\left[\varphi_{i}\left(V_{j}\right)\right]_{i, j=1,2} \neq 0$. Let $x_{j}=\left(\sigma_{1 j}, \sigma_{2 j}, \ldots\right)$ for $j=1,2\left(\sigma_{i j}= \pm 1\right)$. Note that

$$
\begin{aligned}
& \operatorname{det}\left[\varphi_{i}\left(V_{j}\right)\right]_{i, j=1,2}=\operatorname{det}\left[\begin{array}{l}
\sum_{j=1}^{\infty} \sigma_{1 j} V_{1}\left(i_{1}, j\right), \sum_{j=1}^{\infty} \sigma_{1 j} V_{2}\left(i_{1}, j\right) \\
\sum_{j=1}^{\infty} \sigma_{2 j} V_{1}\left(i_{2}, j\right), \sum_{j=1}^{\infty} \sigma_{2 j} V_{2}\left(i_{2}, j\right)
\end{array}\right] \\
& =\sum_{j_{1}, j_{2}=1}^{\infty} \operatorname{det}\left[\begin{array}{l}
\sigma_{1 j_{1}} V_{1}\left(i_{1}, j_{1}\right), \sigma_{1 j_{2}} V_{2}\left(i_{1}, j_{2}\right) \\
\sigma_{2 j_{1}} V_{1}\left(i_{2}, j_{1}\right), \sigma_{2 j_{2}} V_{2}\left(i_{2}, j_{2}\right)
\end{array}\right] \\
& =\sum_{j_{1}, j_{2}=1}^{\infty} \operatorname{det}\left[\begin{array}{l}
\sigma_{1 j_{1}} c^{i_{1}} 2^{2^{2 / 1}+1}, \sigma_{1 j_{2}}(c / 2)^{i_{1}} r^{2^{2 / 2}+2} \\
\sigma_{2 j_{1}} c^{i^{2}} r^{2^{2 i_{1}}+1}, \sigma_{2 j_{2}}(c / 2)^{i_{2}} r^{2^{2 j_{2}+2}}
\end{array}\right] \\
& =\sum_{j, j 2=1}^{\infty} r^{2^{2 j_{1}+1}+2^{2 j_{2}+2}} \cdot \operatorname{det}\left[\begin{array}{l}
\sigma_{1 j_{1}} c^{i_{1}}, \sigma_{1 j_{2}}(c / 2)^{i_{1}} \\
\sigma_{2 j_{1}} c^{i_{2}}, \sigma_{2 j_{2}}(c / 2)^{i_{2}}
\end{array}\right] .
\end{aligned}
$$

If $2^{2 j_{1}+1}+2^{2 j_{2}+2}=2^{2 k_{1}+1}+2^{2 k_{2}+2}$, because of the unique binary expression of each integer we get $j_{1}=k_{1}$ and $j_{2}=k_{2}$. In particular, then, distinct pairs $\left(j_{1}, j_{2}\right)$ give distinct powers of r. Hence the above determinant can be regarded as a power series with coefficients.

$$
A_{j_{1}, j_{2}}=\operatorname{det}\left[\begin{array}{l}
\sigma_{1,1} c^{i_{1}}, \sigma_{1 j_{2}}(c / 2)^{i_{1}} \\
\sigma_{2 j_{1}} c^{i_{2}}, \sigma_{2 j_{2}}(c / 2)^{i_{2}}
\end{array}\right]
$$

If $i_{1}=i_{2}$ then

$$
\operatorname{det}\left[\varphi_{i}\left(V_{j}\right)\right]_{i, j=1,2}=\left(c^{2} / 2\right)^{i_{1}} \cdot \sum_{j_{1}, j_{2}=1}^{\infty} r^{2^{2_{1}+1}+2^{2} h_{2}+2} B_{j, j_{2}}
$$

where

$$
B_{j_{1}, j_{2}}=\operatorname{det}\left[\begin{array}{l}
\sigma_{1, j_{1}}, \sigma_{1, j_{2}} \tag{3.21}\\
\sigma_{2, j_{1}}, \sigma_{2, j_{2}}
\end{array}\right] .
$$

Since $e_{i_{1}} \otimes x_{1}, e_{i_{2}} \otimes x_{2}$ are linearly independent, not all $B_{j_{1}, j_{2}}$ are equal to 0 . Note that if $B_{j_{1}, j_{2}} \neq 0$ then $\left|B_{j_{1}, j_{2}}\right|=2$. If $i_{1} \neq i_{2}$ (we may assume $i_{1}<i_{2}$) then

$$
\operatorname{det}\left[\varphi_{i}\left(V_{j}\right)\right]_{i, j=1,2}=c^{i_{1}+i_{2}}\left[(1 / 2)^{i_{1}}-(1 / 2)^{i_{2}}\right] \cdot \sum_{j_{1}, h_{2}=1}^{\infty} r^{2^{2_{1}+1}+2^{2 / 2+2}} B_{j_{1}, j_{2}}
$$

where

$$
B_{j_{1}, j_{2}}=\left(1 /\left[(1 / 2)^{i^{1}}-(1 / 2)^{i_{2}}\right]\right) \cdot \operatorname{det}\left[\begin{array}{l}
\sigma_{1 j_{1}}, \sigma_{1 j_{2}}(1 / 2)^{i_{i}} \tag{3.22}\\
\sigma_{2 j_{1}}, \sigma_{2 j_{2}}(1 / 2)^{i_{2}}
\end{array}\right] .
$$

It is clear that

$$
\begin{aligned}
1 & \leqslant\left|B_{j_{1}, j_{2}}\right| \leqslant\left[(1 / 2)^{i_{1}}+(1 / 2)^{i_{2}}\right] /\left[(1 / 2)^{i_{1}}-(1 / 2)^{i_{2}}\right] \\
& =\left[1+(1 / 2)^{i_{2}-i_{1}}\right] /\left[1-(1 / 2)^{i_{2}-i_{1}}\right] \\
& \leqslant[1+(1 / 2)] /[1-(1 / 2)]=3
\end{aligned}
$$

Applying Lemma 3.6 to the series

$$
\sum_{j_{1}, j_{2}=1}^{\infty} B_{j_{1}, j_{2}} r^{2^{2} j_{1}+1}+2^{2 z_{2}+2},
$$

where $B_{j_{1}, j_{2}}$ are defined by (3.21) or (3.22), we get $\operatorname{det}\left[\varphi_{i}\left(V_{j}\right)\right]_{i, j=1,2} \neq 0$ as required.

Acknowledgments

The author expresses his gratitude to the referees for their helpful comments concerning the final version of this paper.

References

1. J. H. Biggs, F. R. Deutsch, R. E. Huff, P. D. Morris, and J. E. Olsen, Interpolating subspaces in I_{1} spaces, J. Approx. Theory 7 (1973), 235-301.
2. B. Brosowski and R. Wegmann, Charakterisierung bester Approximationen in normirierten Vektorraumen, J. Approx. Theory 3 (1970), 369-397.
3. H. S. Collins and W. Ruess, Weak compactness in spaces of compact operators and vector-valued functions, Pacific J. Math. 106 (1983), 45-71.
4. R. E. Edwards, "Functional Analysis, Theory, and Applications," Moscow, 1969. [in Russian]
5. G. Lewicki, Kolmogorov's type criteria for spaces of compact operators, J. Approx. Theory 64 (1991), 181-202.
6. P. F. Mah, Characterizations of the strongly unique best approximations, Numer. Funct. Anal. Optimi. 7 (1984/1985), 311-331.
7. J. Malbrock, Chebyshev subspaces in the space of bounded linear operators from c_{0} to c_{0}, J. Approx. Theory 9 (1973), 149-164.
8. J. Malbrock, Best approximation in the space of bounded linear operators from $C(X)$ to $C(Y), J$. Approx. Theory 15 (1975), 132-142.
9. W. M. Ruess and C. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535-546.
10. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin/Heidelberg/New York, 1970.
11. A. WóJCIK, Characterization of strong unicity by tangent cones, in "Approximation and Function Spaces, Proceedings of the International Conference, Gdansk, 1979" (Z. Ciesielski, Ed.), pp. 854-866, PWN, Warsawa/North-Holland, Amsterdam, 1981.
