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We prove Kolmogorov's type characterization of best approximation for given
L E Il'( W, V) in finite dimensional subspace 1/ c Il'( W, V). This extends the results
obtained by Malbrock for the case W = V = Co and W = C( T), V = C(S). If' 1995
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1. INTRODUCTION

Let X be a normed space over a field K (K = IR or K = iC) and let S x.
denote the unit sphere in X*. For x E X put

E(x) = {f E ext S x.: f(x) = Ilxll} (1.1 )

(ext W denotes the set of all extremal points of a given set W), and let for
Yc:: X

g'y(x) = {YE Y: Ilx- yll =dist(x, Y)}. ( 1.2)

If Y is a linear subspace of X then the following Kolmogorov type charac­
terization holds true.

THEOREM 1.1 (see [2]). Assume X is a normed space, Y c X is its linear
subspace, and let x E X\ Y. Then Yo E P y(x) if and only if for every y E Y
there exists f E E(x - Yo) with ref(y) ~ O.

A similar result can be proved in the case of strong unicity. In order to
present it, let us recall that an element y E Y is called a strongly unique best
approximation (briefly, SUBA) for x E X if and only if there exists r > 0
such that for every y E Y,

Ilx- yll?: Ilx- Yoll +r·IIY- Yoll.
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In [11, Theorem 2.1, p. 855] the following was shown.

THEOREM 1.2. Let x E X\ Y and let Y be a linear subspace of X. Then
Yo E Y is a SUBA for x Ivith a constant r > 0 if and only if for every y E Y
there existsfEE(x- Yo) with ref(y)~ -r Ilyll·

If Y is a finite dimensional subspace of X, then by [10, Theorem 1.1,
p. 170] and Theorem 1.2 we get

THEOREM 1.3. Assume X is a normed space and Y c X is a finite-dimen­
siona/linear subspace, and let XEX\Y. Then yEPy{X) (re~p., y is a SUBA
for x in Y) if and only if 0 E cony E(x - y) I y (resp., 0 E intconv E(x - y) Iy,

where E(.:r-y)II,={fIY:fEE(x-y)}). (The symbols convA and intA
denote respectively the smallest convex set containing A and the interior of
A Ivith re~pect to the norm topology.)

In this note we consider the case when X = 2'( W, V) (the space of
all linear continuous operators from a normed space W into a normed
space V equipped with the operator norm) and l' c X is a finite­
dimensional subspace. We prove Kolmogorov's type characterization of
best approximants (Theorem 2.1) which involves only elements from the
sets S wand ext S v., (Note that a similar characterization for the case of
compact operators was shown in [5].) We also present a result concerning
strong unicity. This extends the results obtained in [7] and [8] for the
spaces W = V = Co and W = C( S), V = C( T). Next we characterize finite­
dimensional Chebyshev subspaces in the space $'( co) of all compact
operators going from Co into co.

2. GENERAL CASE

Now we formulate the main result of this section.

THEOREM 2.1. Let W, V be arbitrary normed linear spaces (we consider
the real and complex case) and let ·'r c..'f'( W, V) be an n-dimensional sub­
space. Assume LE..'f'(W, V)\i' and VoEi'. Then VoEP,(L) if and only if
for every [; > 0 there exists mEN, rpl, ... , rpm E ext S v', and 11'1' ... , W", E S w

such that

oE conv{ rpl Q9 WI Iv, ... , rpm ® IV", Iv}

and

lit, ,1;(rp;Q9w;)(L- Vo)-IIL- Volll ~[;,

where ,1,>0, L::'~I,1;=l. (We set (rp;Q9w;)(L) = rp;(Lw j ).)

(2.1 )

(2.2)
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Proof Fix I' > 0 and let !£ = [L] EB 1/. Since !£ is finite dimensional,
S 2' is a compact set. Hence there exist C b ... , CmE S 2' such that
S.Y' C U7'~ I B d( C;, 1'/3). (The symbol Bd(x, r) denotes the closed ball with
a centre x and a radius r.) Select for each i E { I, ..., m}, qJ; Eext S v' and
W;ES w with

(2.3 )

Denote ZI = {qJ;Q9 lj,';: i= I, ... , m} and T= {qJQ9 w: qJ E ext Sv., WE Sw}.
Note that TI2' is a total set over 2'. Hence we can choose Z2 c TI2"
Z2 = {(YI Q9 u 1) I.Y" ..., (Yn+ 1 ®Un+d I.Y,} which forms a basis of 2'*. Put

(2.4 )

and let .It = rz = absolutely convex hull of Z. Since jt is an absolutely
convex absorbing set, we can define II II.II-the Minkowski functional of
the set jl which is a norm in !£*. Hence we can equip the space
(2'*)*=2' with a norm IIAII,=max)'Ezly(A)I. It is easy to observe that
IIYII.,(=suPIIAII,";1 ly(A)1 and, consequently, 1111.(( is the dual norm for 1111,
in 2'*. Now we will show that for every A E2', IliA II - IIA II, I~ ellA II. Of
course, we can assume A f:- O. Then

II-II(A/IIAII)II, I= IIIC;II-II(A/IIAII)II, I

~ IIIC;II-IIC;II, 1+ Illql,-II(A/IIAII)II, I,

where C;E S 2' is chosen so that II(A/IIA II) - ql ~ 1'/3. Hence

II-II(A/IIAII)II, I~ IICj-(A/IIAII)II,+ IIIC;II-IIC;II, I

~ II C; - (A/II A /1)11 + 1'/3 ~ (2/3) 1',

since by (2.3)

(by (2.4), qJ;® W; E ZI C Z). Consequently,

III(A/IIAII)II-II(A/IIAII)II, I ~2e/3
and

IIIAII-IIAII,1 <I' IIAII·

Hence we get immediately

(1- e) IIA II ~ IIA II, ~ (I +1') IIAII·
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From this, it is easy to deduce that

Idist(L, v) -dist,(L,j")1 ~e IILII.

(dist, denotes the distance of L fromi" with respect to the II 11,.) Now let
Vo E 9", (L) (see 1.1) and let V, E 9"', (L ) (the set of best approximants with
respect to the II II,). By Theorem 1.3, 0 Econv EAL - V,) 1, (see 1.1). It is
evident by the definition of II II F. that E,/ L - V,) c UU K.I~I ~ I rxz. Hence
E,/L-V,)={CPI@»'II.\I" .. "cp,@»',I.\I'}, where cp;EextS , • and W;ES"
for i = I, ..., I. Note that

e IILII ~ Idist(L, j")-dist.(L, j~)1

= IIIL - Voll-IIL - V,II, I

= IIIL- Voll- ;tl A;(CPi@W;)(L- VJ!

= I IlL - Voll - itl A;(cp;@w;)(L- Vo)l,

where A;>O, L:~l Ai = I, and L:=I },;(cp;@w;)l, =0. This proves the first
part of the theorem (if IILII i= I we can start from e/IILII).
Now suppose, on the contrary, that Vo rt 9", (L) and condition (2.2) holds.
Put e = (IlL - Voll - dist(L,i"))/2 and let VI E ,OJl,(L). Then

which by (2.1) gives

a contradiction,

Remark 2.2. In Theorem 2.1 the set ext S v. can be replaced by any
norming set C c S v. and S w by any nonning set DeSw ••. (A set Fe S v.
is called a nonning set iff II v II = SUP(E F 1ft v) I for every v E v.)

Applying Theorem 2.1 we may prove a necessary condition for'P" to be
a non-Chebyshev subspace. The method of the proof is similar to that
of [8].

THEOREM 2.3. Assume ii' c !E( W, V) is a non-Chebyshev finite-dimen­
sional subspace (we consider the real case). Then there exists DE 'I', II DII = 1
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such that for every e > 0 there exists fl' ... , fm E ext Sv. and WI, ... , WmEW,
L7'= I Ilwill = 1 such that

(a) G=L7'=lUi®W;)I'/~=O;

(b) if FEY*(W, V) and IIG±FII ~ 1 then IF(D)I <e.

(c) L7'~1 IU;®w;)(D)1 <e.

Proof Since l' is a non-Chebyshev subspace, there exists L E Y( W, V)
such that 0, ±DE~,/(L), IIDII = 1. This will be the required D. Now fix
e> O. Applying Theorem 2.1, we can find fl' ..., fm E ext S v., UI' ... , Urn E

S W, AI' ..., Am ~ 0, and L7'~ I Ai = 1 such that:

and

m

L A;(t;®uJI'/.~=O
;=1

(2.5 )

(2.6)

Put for i = 1, ... , m, W j = Ai ui. Now we check that fl' ..., fm and WI' ... , Wm
satisfy (a), (b), (c). Note that condition (a) is guaranteed by (2.5). To
prove (b), fix FE Y*( W, V), IIF± Gil ~ 1. Hence (F± G)(L) ~ IILII. Since
GI'/.~=O, G(L)±F(L-D)~ IIL-DII = IILII. By (2.6), IF(L)j <e/2 and
IF(L-D)I <e/2. Hence IF(D)I <e.

To show (c), put

P= {i: (/;®w;)(D)~O},

PI = {i: (/;® w;)(D) > A},

V= {i: (/;®w;)(D)<O}.

(2.7)

If V (PI resp.) is empty, then by (2.5) PI (V resp.) is empty and (c) holds
true. So assume that V and PI are nonempty. Hence, by (2.5),

i€P ieU

Now suppose that (c) does not hold. Then

L I(/;® w;)(D)1 ~ e/2
ie P

and

L IUi® w;)(D)1 ~ e/2.
ie U

(2.8)
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Put yp=L'EPllwill and }'u=LiEL/llwill. By (2.7), yp>O, Yu>O, and
Yu + YP = 1. Set

iE P

52 = L (/;® wJ(L).
iE U

By (2.6) 51 + 52 > IILII - e/2. Thus either 51> Yp( IILII - e/2) or 52 >
Yu( IILII - e/2). Suppose that 51> Yp( IILII- e/2). Then by (2.7) and (2.8)

L (ji® lvJ(L + D) > YP IILII = YP IlL + DII,

since O<yp< 1. But for each iEP,

(ji® wi)(L + D) ~ Ilw,11 IlL + DII· (2.9)

By summing both sides of (2.9) we get a contradiction.

If 52 > YcA II L II - e/2) then a similar argument using U and L - D
provides a contradiction. The proof of Theorem 2.3 is complete.

Now we consider the case of strong unicity.

THEOREM 2.4. Let X be a normed real space and let V c X be an
n-dimensional subspace with a basis VI' ... , V". Let 5 c 5 x. be a norming set.
Assume furthermore that there is J > 0 such that for evel)' set fl , ... , f" of
linearly independent jimctionals from 5

(2.10)

(det A denotes the determinant of a matrix A.) Then each XEX has a
strongly unique best approximation in V.

Proof Fix x E X\ V and consider Z = [x] Ei3 v. Since Z as a finitely
dimensional subspace is separable, we can assume that 5 is countable. By
the totality of 5 over Z, we can choose k oE N such that {11' ..., 1k,J is total
over Z. Hence for each k ~ ko we can equip Z with a norm

By (2.10) V with II Ilk is an interpolating subspace of Z. Hence for k~ko
there exists Vk E V which is a SUBA (see 1.3) for x with respect to the II Ilk'
By Theorem 1.3, 0 E int conv Ek(x - vd I v (see 1.1). (We consider the set
Ek(x-Vk) with respect to the II lid By Caratheodory's theorem
0= L:':/ A~ f~ Iv' where f~, ... , f;,+ IE Ek(x - vd, A; > 0, and L:':/ A; = 1.
Passing to a subsequence if necessary, we can assume Vk ---> VO, }.; ---> Ai' and

f~ ---> f E 5 z •·
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It is evident that h(X - Vol = IIx - voll and L7:i AJ;I v= O. Now we
show that A; > 0 for i = I, ... , n + 1. Note that ,1;0> 0 for some
ioE{l, ...,n+l}, since L7:iAi=l, Ai~O for i=I, ... ,n+1. We can
assume io= n + 1. By the Cramer rule,

where

for i = I, ... , n, (2.11 )

Llk=(-l);+ldet[[k(v.)]._ _ '.
I i J J - 1, ..., n. 1- 1•...• n + I, i ... I

Hence, by (2,11), 1/IA7/-:;;,M/J.2/ J)'n+I! for k sufficiently large and M>O
independent of k. Consequently, Ai = Iimk ~ 00 ,17> o. Now take WE V\ {O}.
Since the set {[llv, ...,fn+llv} is total over V, [iO(W) <0 for some
ioE{I, ...,n+l}. From this we derive that [(w)<O for some
[Eext{gESz ': g(x-vo)=llx-voll}. An easy calculation shows that
[EE(x-vo) (see 1.1). Note that a function G:S v 3w-+inf{g(w):
g EE(x - vo)} is upper semicontinuous and, by the above reasoning,
G( w) < 0 for every WE S v' By the compactness of S v we get
sup{G(w): WES v} = -r<O. Now fix VE V\{O} and take [EE(x-vo)
with [(v/llvll)< G(v/llvll)+r/2. Hence [(v/llvll)< -r/2 and consequently
[(v) < -r/2. Ilvll,

By Theorem 1.2, Vo is a SUBA for x in V, which completes the proof of
the theorem.

Remark 2.5. By ([7, Theorem 3.3J) the term J in (2.10) is essential.
Here

EXAMPLE 2.6. Assume W = V = co' Let A E2'( W, V) be so chosen that
for every i EN, x Eext S/''''

I(AxU >J>O.

Then, by Theorem 2.4, each L E2'( W, V) has a strongly unique best
approximation in [A]. (The set S is the same as in Remark 2.5.)

EXAMPLE 2.7. Assume W = II, V = co' Let A E2'( W, V) be represented
as an infinite matrix [AU, i)];, J= I. 2,' If there exists J> 0 such that for
every i, i EN IAU, i)1 > J > 0, then each L E2'( W, V) possesses a strongly
unique best approximation in [A]. Here
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3. STRONG UNICITY IN Jf'(CO)

We start with the following.

THEOREM 3.1. Let 1'- c Jf'(co) be a finite dimensional Chebyshev sub­
space. (The symbol Jf'(co) denotes the space of all compact operators from
Co into co; we consider the real case). Then each L E Jf'(co) has a strongly
unique best approximation in 'Y.

Proof Assume that there exists LoEJf'(Co)\j- such that Vo E,0I',(Lo)
(see (1.2)) is not a SUBA for L o in 1/'. Put

(We denote ei(x) = Xi for x E co.) By [9J,

ext 8)(".«0) = ext St' Q9 ext SI"

Hence

(3.1 )

(3.2)

for all e;Q9x; E E(Lo- Vol (see 1.1). Consequently, the set I is nonempty.
For each i E I define

Since VoE.'?J>, (L o), by Theorem 1.1, for every VEj~ there exists iEI and
Xi E Zi such that

(3.4 )

Since Vo is not a SUBA for L o and'f- is finite dimensional, by
Theorem 1.2, there exists VI E S, such that for every i E I and x E Z;

(3.5)

Now assume that we have constructed L E Jf'( co) such that

for (X E [0, txo) and

(e;Q9x)(L) = IILII

(3.6)

(3.7 )

for every i E I and x E Zi' By Theorem 1.1, (3.4), and (3.6), (X VI E,0I', (L) for
every (X E [0, (Xo), which contradicts the fact that'J- is a Chebyshev sub­
space. So to finish the proof, it is necessary to construct an L E Jf'( co)
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satisfying (3.6) and (3.7). To do this, fix iEI and x=(X1,X2, ... )EZi • If
L:~= 1 IVI(i, k)i = 0 (VI is represented by a matrix [VI(i, k)];.k= I. 2,.J then
define

(3.8)

where

L(i, k) = Lo(i, k) - Vo(i, k).

(Here [Lo(i, k)] j, k ~ t, 2. ... denote the matrix corresponding to L o and
[ YoU, k) 1, k = 1,2•. the matrix corresponding to Yo)·

If L:~= I IVt(i, k)1 > 0, then put

F;= {kEN\U;: xk= sgn V1(i, k)},

Ei=N\(U;uFJ

Take Y = (Yl, Y2, ... , ) E ext Sf~ given by

(3.9)

(3.10)

(3.11 )

for kEF;uEj

for kE U j •

(3.12)

By (3.9) and (3.12), (ej@y)(Lo- Yo) = IILo- Voll. According to (3.5),

(e;®y)(V1)= L 1V1(i,k)l- L 1V1(i,k)I~O. (3.13)
ke:Fi k€(U,uEj)

From this we derive Fi =I- 0, since L:;;=:: I 1V1(i, k)1 > O. Define for kEN,

for kEFj

for kEN\Fj

(3.14 )

and set L, = (L( i, 1), L(i, 2), ... ). We show that for oc E [0, 1), P ~ 1,

oc 00

I IPL(i, k) -IXV1(i, k)1 ~ fJ· I IL(i, k)l, (3.15)
k= 1 k= 1

To do this, take any Z E ext Sfoc' If Zk = X k for every k E F i then
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ex:}

(e;C8>z)(V1 ) = L V\(i,k)Zk= L 1V\(i,k)l+ L Vl(i,k)Zk~O
k = 1 k E F1 k E E, u V,

by (3.13). Hence

x' '-..£' '.X

L (fJL(i,k)-exV\(i,k))Zk=:L fJL(i,k)Zk- ex · L V\(i,k)Zk
k~l k=\ k~l

cc'

={3' I IL(i,k)l-ex· I V\(i,k)Zk
keF, k~t

cc

~ fJ· L: IL(i, k)l·
k~t

If Zk= - ......k for some kEF;, then the set F:={kEF,:xk= -zd IS non­
empty. Compute

'x'

L ({3L(i,k)-IXV 1(i,k))Zk
k ~ 1

= LPlVt(i,k)I-IX·(L.lVt(i,k)l+ ~ V\(i,k)'::k)
kEf, kEf l kEE,uU/

~fJ' L I(Vtfi,k)1
k E f~'

x

=fJ· L IL(i,k)1
k~t

(see 3.13).
Now if i ¢I then we define L; = (L(i, 1), L(i, 2 )... , ) by

L(i, k) = LoU, k) - Vo(i, k) for k = 1, 2, .... (3.16 )
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Finally observe that by the Schur theorem (see [4, p. 864]) for i ~ i o

Hence the set I is finite and

Following (3.15) for iEI we can modify, if necessary, the rows L i defined
by (3.8) and (3.14), multiplying them by constants Pi ~ I such that

for cx: E [0, I). Now choose cx:o E (0, I) such that M + cx:o < IILo- Voli. By
(3.17), for CX:E [0, CX:o) and iEN\I,

Hence, by following (3.8), (3.14), and (3.15), the operator L defined by
(3.8), (3.14), and (3.16) satisfies (3.6) for cx: E [0, CX:o) and (3.7) for all i E I
and x E Zi' The proof of Theorem 3.1 is complete.

Note that the unicity of best approximation for given L E X'(co) in "Y'
does not force the strong unicity because of

EXAMPLE 3.2. Let L = [L(i, k) ] i. k ~ 1.2. and V = [ V(i, k) ] i. k= l,2. be
defined by

if i =f I
if i = I

if i =f 1

for i = 1,

for i = I,

k>1

k=1

Let "Y' = [V]. We show that 0 is the unique best approximation for L in
i/o Take cx: E R\{O}. If cx: > 0, choose an even number ko such that
cx:/q > I/k~. Let z = (zJ, Z2, ... ) E ext Sr'" be given by

{
I

"'k- -1
if k =fko
if k=ko'
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II L - (X VII ~ (e I Q9 z)( L - V)

= I zf ( L(1, l) - (X V(1, !))
1= I

'Xc

= I (L(1,!) - V(1, I)) + 2((X/k~ - Ijk~)
f~ I

> I L(1,!) = IlL - 011,
f~ I

since Lr:: 1 V(1, I) = O. If (X < 0, choose ko odd such that -(Xjk~> Ijk~.

Reasoning as above we get IIL-(XVII > IILII. Hence OE£?It (L) is the
unique best approximation. However, E(L - 0) = {e, (8) (1, 1, ... )} (see (3.2)
and (1.1)). Since e\ (8) (1, 1, ... )( V) = 0, by Theorem 1.2 0 is not a SUBA for
Lin "r.

Remark 3.3. If we replace Co by I~':c, then by [3, Theorem 2.2(a)] or
[9] the set ext 8J1'.(/"') is finite. By [6], if j' is a subspace of .:f(l"~) then
L E .:f(l'':c) has a unique best approximation inj- if and only if L has a
strongly unique best approximation in j/-.

COROLLARY 3.4. If V E 8J1'(/01 then 'f' = [V] is a Chebyshev subspace if
and only if for every i EN and x Eext Sf' ,

(3.18 )

Comparing Corollary 3.4 with Theorem 3.3 of [7] we get

PROPOSITION 3.5. There exists

<pEext 8 Y'.(/01\{e;(8)x: i= 1, 2, ... , XEext Sf'}'

Proof If extS 2 ,.(co)c{(e;Q9x):i=I,2, ... ,xEextS,x} then by
Theorems 1.1 and 1.2 each V satisfying (3.18) defines a Chebyshev sub­
space in .Y-'(co) which contradicts Theorem 3.3 of [7].

Proposition 3.5 shows that Theorem 2.2( a) of [3] cannot be generalized
from the case compact operators to the case of linear operators.

At the end of this section we present an example of a two-dimensional
Chebyshev subspace in :'('(co)' The reasoning presented here is similar to
that of [1]. First we recall, after [1],

LEMMA 3.6. Let M> 1 be given, Assume f( r) = L;~~ 0 all r" is a power
series I'.'hose coefficients are not all O. Assume that if all =I 0 then

1~ lalll ~M.

Then for every r E (0, Ij(M + 1)), f(r) =I O.
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Proof Let N denote the smallest index n such that an # O. Then

I/(r)1 = In~N anrnl ~ IaN' rNI_ n~~+ 1 lanllrl
n

~ IrIN-M Ir/ N + 1/(1-lr/)

= IrI N /(1 -Irl )(1-lrl(1 + M)) > O.

EXAMPLE 3.7. Let CE(O, I), rE(O, 1/4). Define

163

V ( . k) i 22k + )
I 1, . = C . r for i, k = I, 2, ,

for i, k = I, 2, .

(3.19 )

(3.20 )

We show that VI' V2 defined by (3.19) and (3.20) form a two-dimensional
interpolating (hence Chebyshev) subspace in f(co). To do this, take
«JI =ei1 Q9x 1 , «J2=ei2 Q9x2 to be two linearly independent functionals from
extSK*(c'o)' We prove that det[«J;(Vj)l.j= 1.2 #0. Let xj =(O"lj'0"2j"") for
j= I, 2 (O"ij= ±l). Note that

If 22j)+ I + 2 212 + 2 = 22k1 + 1+ 22k2+ 2, because of the unique binary expres­
sion of each integer we get jl = k I and j2 = k 2. In particular, then, distinct
pairs (j I' j2) give distinct powers of r. Hence the above determinant can be
regarded as a power series with coefficients.

w

d [(V)] ( 2/2)" ~ 22i1+ 1 +22
l2+ 2Bet «J i j i. j = L 2 = C I). L.. r iI. 12'

jl.12~ I
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(3.21 )

Since eil ® x I' e;2 ® x 2 are linearly independent, not all BiJ. h are equal to
O. Note that if BiJ.hi=O then IBjl ,h!=2. Ifi,i=i2 (we may assume i,<i2 )

then

oc

det[ <Pit VJ);, j= 1,2 = Cil + i2[ 0/2rl - 0/2)i2]. I. r
2211

+ 1+ 2212+2Bjl.h'

jl.h=l

where

l
a . a 0/2)'11B,=(I/[0/2);I- O/2t]).det Ill' Il2 .,

ll,l. a2jl' a2j20/2)'2

It is clear that

1~ IBh , hi ~ [0/2r' + 0/2)i2]/[ 0/2 );1 - 0/2 )i2]

= [I + (1/2 )i2 -;1 ]/[ 1 - 0/2 );2 -'1 J

~ [1 + 0/2) J/[ 1 - (1/2)] = 3.

Applying Lemma 3.6 to the series

(3.22 )

where B jl . h are defined by (3.21 ) or (3.22), we get det [ <P i ( VJ ] i, j ~ 1,2 i= 0 as
required.
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